
Project Tenji:
CPP

Project Tenji ©2024 by Khalil Salahat and Mohamad El Moussawi

Hosted at tenji.org , contact : contact@tenji.org

Based on the tutorial at cplusplus.com -2023

Contents

1 Basics 3
1.1 Fundamental data types . 3
1.2 Declaration and initialization of variables . 3
1.3 Scope of variables . 4
1.4 Intro to strings . 4
1.5 Constants . 4

1.5.1 Literals . 4
1.5.2 Defined constants . 6
1.5.3 Declared constants . 6

1.6 Operators . 6
1.6.1 Assignment (=) . 6
1.6.2 Arithmetic operators (+,-,*,/,%) . 6
1.6.3 Increase an decrease (++,–) . 7
1.6.4 Relational and equality operators (==, !=,>, <, >=, <=) 7
1.6.5 Logical operators (!,&&,||) . 7
1.6.6 Comma operator (,) . 8
1.6.7 Bitwise operators . 8
1.6.8 Explicit type casting oerator . 8
1.6.9 sizeof() . 8
1.6.10 Precedence of operators . 9

1.7 Basic Input/Output . 9
1.7.1 Standard Output (cout) . 9
1.7.2 Standard Input (cin) . 9

2 Control Structures 11
2.1 Control Structures . 11

2.1.1 block {} . 11
2.1.2 Conditional structure:if and else . 11
2.1.3 Iteration structures (loops) . 11
2.1.4 Jump statements . 12
2.1.5 The selective structure: switch . 13

2.2 Function . 13
2.2.1 Arguments passed by value and by reference . 14
2.2.2 Default values in parameters . 14
2.2.3 Overloaded functions . 15
2.2.4 Recursivity . 15
2.2.5 Declaring functions . 15

1

supahaka

Contents CPP
;A<

3 Compound data types 16
3.1 Arrays . 16

3.1.1 Initializing arrays . 16
3.1.2 Accessing the values of an array . 16
3.1.3 Multidimensional arrays . 17
3.1.4 Arrays as parameters . 17

3.2 Character Sequences . 17
3.3 Pointers . 18

3.3.1 Reference operator (&) . 18
3.3.2 Dereference operator (*) . 18
3.3.3 Declaring variables of pointer types . 19
3.3.4 Pointers and arrays . 19
3.3.5 Pointer intialization . 20
3.3.6 Pointer arithmetics . 20
3.3.7 Pointers to pointers . 21
3.3.8 Void pointers . 22
3.3.9 Null pointer . 22
3.3.10 Pointers to functions . 22

3.4 Dynamic memory . 23
3.4.1 Operators new and new[] . 23
3.4.2 Check if the allocation was successful . 23
3.4.3 Operators delete and delete[] . 24

3.5 Data Structure . 24
3.5.1 Pointer to structures . 24
3.5.2 Nesting structures . 25

4 Object Oriented Programming 26
4.1 Classes . 26

4.1.1 Constructors and destructors . 27
4.1.2 Pointers to classes . 29
4.1.3 Overloading operators . 29
4.1.4 The keyword this . 30
4.1.5 Static members . 31

5 Input/Output with files 32
5.1 Open a file . 32
5.2 Closing a file . 33
5.3 Text files . 33

5.3.1 Writing on a text file . 33
5.3.2 reading a text file . 33

www.tenji.org 2 Tenjiorg

supahaka

Chapter 1

Basics

1.1 Fundamental data types

Name Description Size
in bytes Range

char Charcter or small integer 1 signed: -128 to 127
unsigned: 0 to 255

short int Short Integer. 2 signed: -32768 to 32767
unsigned: 0 to 65535

int Integer. 4 signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

long int Long integer. 4 signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

bool Boolean value. 1 true or false
float Floating point number. 4 +/- 3.4e +/- 38 (7 digits)
double Double precision floating point number. 8 +/- 1.7e +/- 308 (15 digits)
long double Long double precision floating point number. 8 +/- 1.7e +/- 308 (15 digits)
wchar t Wide character. 2 or 4 1 wide character

Wide characters are used mainly to represent non-English or exotic character sets.

1.2 Declaration and initialization of variables

1 i n t a ;
2 f l o a t mynumber ;
3 i n t a , b , c ; // to d e c l a r e more than one v a r i a b l e o f the same type
4 unsigned shor t i n t Number ; // to d e c l a r e v a r i a b l e with type
5

6 i n t a=5; // i n i t i a l va lue = 5
7 i n t b (2) ; // i n i t i a l va lue = 2

3

supahaka

Basics CPP
;A<

1.3 Scope of variables

A variable can be either of global or local scope. A global vari-
able is a variable declared in the main body of the source code,
outside all functions, while a local variable is one declared within
the body of a function or a block.

1.4 Intro to strings
We need to include an additional header file in our source code: <string> and have access to the std
namespace .
Declaration and initialization :

1 s t r i n g mystring = ” This i s a s t r i n g ” ;
2 s t r i n g mystring (” This i s a s t r i n g ”) ;

1.5 Constants
Constants are expressions with a fixed value.

1.5.1 Literals
Literals are used to express particular values within the source code of a program.

Integer Numerals

They are numerical constants that identify integer decimal values.
In addition to decimal numbers (base 10) C++ allows the use as literal constants of octal numbers (base
8) and hexadecimal numbers (base 16).

1 75 // decimal
2 0113 // o c t a l s t a r t with 0
3 0x4b // hexadecimal s t a r t with 0x

Literal constants, like variables, are considered to have a specific data type.
1 75 // i n t
2 75u // unsigned i n t
3 75 l // long
4 75 u l // unsigned long

Floating Point Numbers

They express numbers with decimals and/or exponents.

www.tenji.org 4 Tenjiorg

supahaka

Basics CPP
;A<

1 3.14159 // 3.14159
2 6 .02 e23 // 6 .02 x 10ˆ23
3 1 .6 e−19 // 1 .6 x 10ˆ−19
4 3 .0 // 3 .0
5

6 3.14159L // long double
7 6 .02 e23 f // f l o a t

Character and string literals

There also exist non-numerical constants, like:
1 ’ z ’
2 ’ p ’
3 ” He l lo world ”
4 ”How do you do?”

Character and string literals have certain peculiarities, like the escape codes.
These are special characters that are difficult or impossible to express otherwise in the source code of a
program:

\n newline
\r carriage return
\t tab
\v vertical tab
\b backspace
\f form feed (page feed)
\a alert (beep)
\’ single quote(’)
\” double quote(”)
\? question mark (?)
\\ backslash(\)

• String literals can extend to more than a single line of code by putting a backslash sign (\) at the
end of each unfinished line.

1 ” s t r i n g expres sed in \
2 two l i n e s ”
3

• You can also concatenate several string constants separating them by one or several blank spaces,
tabulators, newline or any other valid blank character:

1 ” t h i s forms ” ”a s i n g l e ” ” s t r i n g ”
2 ” o f ch a r a c t e r s ”
3

• Finally, if we want the string literal to be explicitly made of wide characters (wchar t), instead of
narrow characters (char), we can precede the constant with the L prefix:

1 L” This i s a wide charac t e r s t r i n g ”
2

www.tenji.org 5 Tenjiorg

supahaka

Basics CPP
;A<

Boolean literals

There are only two valid Boolean values: true and false. These can be expressed in C++ as values of type
bool by using the Boolean literals true and false.

1.5.2 Defined constants
ou can define your own names for constants that you use very often without having to resort to memory-
consuming variables, simply by using the #define preprocessor directive. Its format is:

1 #d e f i n e PI 3 .14159
2 #d e f i n e NEWLINE ’ \n ’

1.5.3 Declared constants
With the const prefix you can declare constants with a specific type in the same way as you would do with
a variable:

1 const i n t pathwidth = 100 ;
2 const char tabu la to r = ’ \ t ’ ;

1.6 Operators

1.6.1 Assignment (=)
The assignment operator assigns a value to a variable.
The assignment operation always takes place from right to left, and never the other way.

1 a=5;
2 a=b ;
3

the assignment operation can be used as the value (or part of an value) for another assignment operation.
1 a = 2+(b=5) ;
2

is equivalent to :
1 b =5 ;
2 a = 2 + b ;
3

you cans assign a value to multiple variables :
1 a = b = c = 5 ;
2

1.6.2 Arithmetic operators (+,-,*,/,%)
+ addition
- subtraction
* multiplication
/ division
% modulo

Modulo is the operation that gives the remainder of a division of two values.

www.tenji.org 6 Tenjiorg

supahaka

Basics CPP
;A<

1.6.3 Increase an decrease (++,–)
The increase operator (++) and the decrease operator (–) increase or reduce by one the value stored in a
variable.Thus:

1 c++;
2 c+=1;
3 c=c+1;

are all equivalent.
A characteristic of this operator is that it can be used both as a prefix (++a) and as a suffix(a++).Notice
the difference :

1 // Case 1
2 b =3 ;
3 a = ++b ; // a conta in s 4 , b conta in s 4
4 // Case 2
5 b =3 ;
6 a = b ++;// aconta ins 3 , b c o n t a i s 4

1.6.4 Relational and equality operators (==, !=,>, <, >=, <=)
In order to evaluate a comparison between two expressions we can use the relational and equality operators.

== Equal to
!= Note equal to
> Greater than
< Less than or equal to
<= Less than or equal to

1.6.5 Logical operators (!,&&,||)
! operator

The Operator ! is the C++ operator to perform the Boolean operation NOT.
1 ! t rue // eva lua t e s to f a l s e
2 ! f a l s e // eva lua t e s to t rue .

&& operator

a b a&&b
true true true
true false false
false true false
false false false

|| operator

a b a||b
true true true
true false true
false true true
false false false

www.tenji.org 7 Tenjiorg

supahaka

Basics CPP
;A<

Conditional operator (?)

The conditional operator evaluates an expression returning a value if that expression is true and a different
one if the expression is evaluated as false. Its format is:

1 cond i t i on ? r e s u l t 1 : r e s u l t 2

If condition is true the expression will return result1, if it is not it will return result2.

1.6.6 Comma operator (,)
The comma operator (,) is used to separate two or more expressions that are included where only one
expression is expected.

1 a = (b=3, b+2) ;

Would first assign the value 3 to b, and then assign b+2 to variable a. So, at the end, variable a would
contain the value 5 while variable b would contain value 3.

1.6.7 Bitwise operators
& AND Bitwise AND
— OR Bitwise Inclusive OR
ˆ XOR Bitwise Exclusive OR
∼ NOT Unary complement (bit inversion)
<< SHL Shift Left
>> SHR Shift Right

1.6.8 Explicit type casting oerator
Type casting operators allow you to convert a datum of a given type to another.

1 i n t i ;
2 f l o a t f = 3 . 1 4 ;
3 i = (i n t) f ;
4 // OR
5 i = i n t (f) ;

1.6.9 sizeof()
This operator accepts one parameter, which can be either a type or a variable itself and returns the size
in bytes of that type or object:

1 a = s i z e o f (char) ;

www.tenji.org 8 Tenjiorg

supahaka

Basics CPP
;A<

1.6.10 Precedence of operators
Level Operator Description Grouping
1 :: scope Left-to-right
2 () [] . − > ++ – postfix Left-to-right

3
++ – ∼ sizeof new delete

* &
+-

unary (prefix)
indirection and reference (pointers)

unary sign operator
Right-to-left

4 (type) type casting Right-to-left
5 .* − >* pointer-to-member Left-to-right
6 * / % multiplicative Left-to-right
7 + - additive Left-to-right
8 <<>> shift Left-to-right
9 <><=>= relational Left-to-right
10 ==! = equality Left-to-right
11 & bitwise AND Left-to-right
12 ˆ bitwise XOR Left-to-right
13 | bitwise OR Left-to-right
14 && logical AND Left-to-right
15 || logical OR Left-to-right
16 ?: conditional Right-to-left
17 = *= /= %= += -= >>=<<= & =ˆ= | = assignemnt Right-to-left
18 , comma Left-to-right

All these precedence levels for operators can be manipulated or become more legible by removing possible
ambiguities using parentheses ()

1.7 Basic Input/Output

1.7.1 Standard Output (cout)
By default, the standard output of a program is the screen, and the C++ stream object defined to access
it is cout. cout is used in conjunction with the insertion operator <<

1 cout << ”Output sentence ” ; // p r i n t s Output sentence on sc r e en
2 cout << 120 ; // p r i n t s number 120 on sc r e en
3 cout << x ; // p r i n t s the content o f x on sc r e en

The << operator inserts the data that follows it into the stream preceding it.
The insertion operator (<<) may be used more than once in a single statement:

1 cout << ” Hel lo , I am ” << age << ” years o ld and my z ipcode i s ” << z ipcode ;

In C++ a new-line character can be specified as \n
Additionally, to add a new-line, you may also use the endl manipulator.

1 cout << ” F i r s t sentence . ” << endl ;

1.7.2 Standard Input (cin)
The standard input device is usually the keyboard.. Handling the standard input in C++ is done by
applying the overloaded operator of extraction (») on the cin stream. The operator must be followed by
the variable that will store the data that is going to be extracted from the stream.

www.tenji.org 9 Tenjiorg

supahaka

Basics CPP
;A<

1 i n t age ;
2 c in >> age ;

You can also use cin to request more than one datum input from the user:
1 c in >> a >> b ;
2 // same as
3 c in >> a ;
4 c in >> b ;

cin and strings

We can use cin to get strings.However,cin extraction stops reading as soon as if finds any blank space
character.
In order to get entire lines, we can use the function getline, which is the more recommendable way to get
user input with cin:

1 g e t l i n e (cin , mystr)

The standard header file <sstream> defines a class called stringstream that allows a string-based object
to be treated as a stream.This way we can perform extraction or insertion operations from/to strings,For
example, if we want to extract an integer from a string we can write:

1 s t r i n g mystr (” 1204 ”) ;
2 i n t myint ;
3 s t r i ng s t r eam (mystr) >> myint ;

www.tenji.org 10 Tenjiorg

supahaka

Chapter 2

Control Structures

2.1 Control Structures
A program is usually not limited to a linear sequence of instructions. During its process it may bifurcate,
repeat code or take decisions.

2.1.1 block {}
A block is a group of statements which are separated by semicolons (;) like all C++ statements, but
grouped together in a block enclosed in braces: :

1 { statement1 ; statement2 ; statement3 ; }

2.1.2 Conditional structure:if and else
The if keyword is used to execute a statement or block only if a condition is fulfilled.

1 i f (c ond i t i on) statement

Where condition is the expression that is being evaluated. If this condition is true, statement is executed.
If it is false, statement is ignored.
We can additionally specify what we want to happen if the condition is not fulfilled by using the keyword
else.

1 i f (c ond i t i on) statement1 e l s e statement2

The if + else structures can be concatenated with the intention of verifying a range of values.
1 i f (x > 0)
2 cout << ”x i s p o s i t i v e ” ;
3 e l s e i f (x < 0)
4 cout << ”x i s negat ive ” ;
5 e l s e
6 cout << ”x i s 0” ;

2.1.3 Iteration structures (loops)
Loops have as purpose to repeat a statement a certain number of times or while a condition is fulfilled.

11

supahaka

Control Structures CPP
;A<

The while loop

format :
1 whi le (exp r e s s i on) statement

And its functionality is simply to repeat statement while the condition set in expression is true.

The do-while loop

format :
1 do statement whi l e (cond i t i on) ;

Its functionality is exactly the same as the while loop, except that condition in the do-while loop is
evaluated after the execution of statement instead of before.

The for loop

format :
1 f o r (i n i t i a l i z a t i o n ; cond i t i on ; i n c r e a s e) statement ;

And its main function is to repeat statement while condition remains true, like the while loop. But in
addition, the for loop provides specific locations to contain an initialization statement and an increase
statement.
Note that

• The initialization and increase fields are optional.

• Optionally, using the comma operator (,) we can specify more than one expression in any of the fields
included in a for loop

2.1.4 Jump statements
The break statement

Using break we can leave a loop even if the condition for its end is not fulfilled. It can be used to end an
infinite loop, or to force it to end before its natural end.

1 break ;

The continue statement

The continue statement causes the program to skip the rest of the loop in the current iteration as if the
end of the statement block had been reached, causing it to jump to the start of the following iteration.

1 cont inue ;

The goto statement

goto allows to make an absolute jump to another point in the program.The destination point is identified
by a label, which is then used as an argument for the goto statement. A label is made of a valid identifier
followed by a colon (:).
example :

www.tenji.org 12 Tenjiorg

supahaka

Control Structures CPP
;A<

1 i n c lude <iostream>
2 us ing namespace std ;
3 i n t main ()
4 {
5 i n t n=10;
6 loop :
7 cout << n << ” , ” ;
8 n−−;
9 i f (n>0) goto loop ;

10 cout << ”FIRE! \ n” ;
11 re turn 0 ;
12 }

The exit function

The purpose of exit is to terminate the current program with a specific exit code.
1 void e x i t (i n t ex i t code) ;

2.1.5 The selective structure: switch
Its objective is to check several possible constant values for an expression.

1 switch (exp r e s s i on)
2 {
3 case constant1 :
4 group o f statements 1 ;
5 break ;
6 case constant2 :
7 group o f statements 2 ;
8 break ;
9 .

10 .
11 .
12 d e f a u l t :
13 d e f a u l t group o f statements
14 }

• switch evaluates expression and checks if it is equivalent to constant1, if it is, it executes group of
statements 1 until it finds the break statement. When it finds this break statement the program
jumps to the end of the switch selective structure.

• If expression was not equal to constant1 it will be checked against constant2. If it is equal to this, it
will execute group of statements 2 until a break keyword is found, and then will jump to the end of
the switch selective structure.

• Finally, if the value of expression did not match any of the previously specified constants the program
will execute the statements included after the default: label, if it exists

2.2 Function
Using functions we can structure our programs in a more modular way.
A function is a group of statements that is executed when it is called from some point of the program.

www.tenji.org 13 Tenjiorg

supahaka

Control Structures CPP
;A<

1 type name (parameter1 , parameter2 , . . .) { statements }

• type is the data type specifier of the data returned by the function, if we want to return no value we
use the void type specifier.

• name is the identifier by which it will be possible to call the function.

• parameters :Each parameter consists of a data type specifier followed by an identifier, like any regular
variable declaration (for example: int x) and which acts within the function as a regular local variable.
They allow to pass arguments to the function when it is called. The different parameters are separated
by commas.

• statements is the function’s body. It is a block of statements surrounded by braces { }.

the format for calling a function includes specifying its name and enclosing its parameters between paren-
theses.

1 pr intmessage () ;

2.2.1 Arguments passed by value and by reference
• Passing by value :

This means that when calling a function with parameters, what we have passed to the function were
copies of their values but never the variables themselves.

• Passing by reference:
When a variable is passed by reference we are not passing a copy of its value, but we are somehow
passing the variable itself to the function and any modification that we do to the local variables will
have an effect in their counterpart variables passed as arguments in the call to the function.
to pass by reference the type of each parameter was followed by an ampersand sign (&)

2.2.2 Default values in parameters
When declaring a function we can specify a default value for each of the last parameters. This value will
be used if the corresponding argument is left blank when calling to the function.

1 i n t d i v id e (i n t a , i n t b=2){
2 . . .
3 }

www.tenji.org 14 Tenjiorg

supahaka

Control Structures CPP
;A<

2.2.3 Overloaded functions
In C++ two different functions can have the same name if their parameter types or number are different.

1 #inc lude <iostream>
2 us ing namespace std ;
3 i n t operate (i n t a , i n t b)
4 {
5 re turn (a∗b) ;
6 }
7 f l o a t operate (f l o a t a , f l o a t b)
8 {
9 re turn (a/b) ;

10 }
11 i n t main ()
12 {
13 i n t x=5,y=2;
14 f l o a t n=5.0 ,m=2.0;
15 cout << operate (x , y) ;
16 cout << ”\n” ;
17 cout << operate (n ,m) ;
18 cout << ”\n” ;
19 re turn 0 ;
20 }

2.2.4 Recursivity
Recursivity is the property that functions have to be called by themselves.

1 long f a c t o r i a l (long a)
2 {
3 i f (a > 1)
4 re turn (a ∗ f a c t o r i a l (a−1)) ;
5 e l s e
6 re turn (1) ;
7 }
8

2.2.5 Declaring functions
To be able to call a function it must have been declared in some earlier point of the code.
There is an alternative way to avoid writing the whole code of a function before it can be used.
This can be achieved by declaring just a prototype of the function before it is used, instead of the entire
definition.

1 type name (argument type1 , argument type2 , . . .) ;

Having the prototype of all functions together in the same place within the source code is found practical by
some programmers, and this can be easily achieved by declaring all functions prototypes at the beginning
of a program.

www.tenji.org 15 Tenjiorg

supahaka

Chapter 3

Compound data types

3.1 Arrays
An array is a series of elements of the same type placed in contiguous memory locations that can be
individually referenced by adding an index to a unique identifier.

1 type name [e lements] ;

where elements field specifies how many of these elements the array has to contain.

3.1.1 Initializing arrays
we have the possibility to assign initial values to each one of its elements by enclosing the values in braces
{ }

1 i n t b i l l y [5] = { 16 , 2 , 77 , 40 , 12071 } ;
2 // OR
3 i n t b i l l y [] = { 16 , 2 , 77 , 40 , 12071 } ;

3.1.2 Accessing the values of an array
In any point of a program in which an array is visible, we can access the value of any of its elements
individually as if it was a normal variable, thus being able to both read and modify its value.

1 name [index]

1 b i l l y [2] = 75 ; // To s t o r e a value
2 a = b i l l y [2] ; // to pass the value to a v a r i a b l e

16

supahaka

Compound data types CPP
;A<

3.1.3 Multidimensional arrays
Multidimensional arrays can be described as ”arrays of arrays”.

declaration:
1 i n t jimmy [3] [5] ; // d e c l a r a t i o n
2 jimmy [1] [2] ; // a c c e s s i n g

3.1.4 Arrays as parameters
In C++ it is not possible to pass a complete block of memory by value as a parameter to a function, but
we are allowed to pass its address. declaration :

1 void procedure (i n t arg [])

In a function declaration it is also possible to include multidimensional arrays.
1 base type [] [depth] [depth]

Notice that the first brackets [] are left blank while the following ones are not. This is so because the
compiler must be able to determine within the function which is the depth of each additional dimension.

3.2 Character Sequences
because strings are in fact sequences of characters, we can represent them also as plain arrays of char
elements.
since the array of characters can store shorter sequences than its total length, a special character is used
to signal the end of the valid sequence: the null character, whose literal constant can be written as ’\0’

1 char jenny [2 0] ;

Our array of 20 elements of type char, called jenny, can be represented storing the characters sequences
”Hello” and ”Merry Christmas” as:

we can initialize the array of char elements called myword with a null-terminated sequence of characters
by either one of these two methods:

www.tenji.org 17 Tenjiorg

supahaka

Compound data types CPP
;A<

1 char myword [] = { ’H ’ , ’ e ’ , ’ l ’ , ’ l ’ , ’ o ’ , ’ \0 ’ } ;
2 char myword [] = ” He l lo ” ;

sequences of characters stored in char arrays can easily be converted into string objects just by using the
assignment operator:

1 s t r i n g mystring ;
2 char myntcs []= ”some text ” ;
3 mystring = myntcs ;

3.3 Pointers
The memory of your computer can be imagined as a succession of memory cells, each one of the minimal
size that computers manage (one byte). These single-byte memory cells are numbered in a consecutive
way, so as, within any block of memory, every cell has the same number as the previous one plus one.

3.3.1 Reference operator (&)
The address that locates a variable within memory is what we call a reference to that variable. This
reference to a variable can be obtained by preceding the identifier of a variable with an ampersand sign
(&)

1 ted = &andy ; // This would a s s i gn to ted the address o f v a r i a b l e andy

The variable that stores the reference to another variable is what we call a pointer

3.3.2 Dereference operator (*)
Pointers are said to ”point to” the variable whose reference they store.
Using a pointer we can directly access the value stored in the variable which it points to. To do this, we
simply have to precede the pointer’s identifier with an asterisk (*)

1 beth = ∗ ted ; // beth equal to va lue pointed by ted

You must clearly differentiate that the expression ted refers to the value 1776, while *ted refers to the
value stored at address 1776

1 beth = ted ; // beth equal to ted (1776)
2 beth = ∗ ted ; // beth equal to va lue pointed by ted (25)

Notice the difference between the reference and dereference operators:

• & is the reference operator and can be read as ”address of”

www.tenji.org 18 Tenjiorg

supahaka

Compound data types CPP
;A<

• * is the dereferenece operator and can be read as ”value pointed by”

Thus, they have complementary (or opposite) meanings. A variable referenced with & can be dereferenced
with *.

1 andy = 25 ;
2 ted = &andy ;
3 // The f o l l o w i n g e x p r e s s i o n s are t rue
4 andy == 25
5 &andy == 1776
6 ted == 1776
7 ∗ ted == 25
8 // as long as the address pointed by ted remains unchanged the f o l l o w i n g

exp r e s s i on w i l l be t rue :
9 ∗ ted == andy

3.3.3 Declaring variables of pointer types
Due to the ability of a pointer to directly refer to the value that it points to, it becomes necessary to
specify in its declaration which data type a pointer is going to point to.
The declaraton of pointers :

1 type ∗ name ;

where type is the data type of the value that the pointer is intended to point to. This type is not the type
of the pointer itself! but the type of the data the pointer points to.
the asterisk sign (*) that we use when declaring a pointer only means that it is a pointer, and should not
be confused with the dereference operator.
Declaring multiple pointers

1 i n t ∗ p1 , ∗ p2 ;

3.3.4 Pointers and arrays
The concept of array is very much bound to the one of pointer. In fact, the identifier of an array is
equivalent to the address of its first element, as a pointer is equivalent to the address of the first element
that it points to, so in fact they are the same concept.

1 i n t numbers [2 0] ;
2 i n t ∗ p ;
3 // the f o l l o w i n g ass ignment operat i on would be v a l i d
4 p = numbers ;

After that, p and numbers would be equivalent and would have the same properties. The only difference
is that we could change the value of pointer p by another one, whereas numbers will always point to the
first of the 20 elements of type int with which it was defined.
Therefore, unlike p, which is an ordinary pointer, numbers is an array, and an array can be considered a
constant pointer.Therefore, the following allocation would not be valid:

1 numbers = p ;

bracket sign operators [] are also a dereference operator known as offset operator. They dereference the
variable they follow just as * does, but they also add the number between brackets to the address being
dereferenced.

www.tenji.org 19 Tenjiorg

supahaka

Compound data types CPP
;A<

1 //These two e x p r e s s i o n s are equ iva l en t and v a l i d both i f a i s a po in t e r or i f
a i s an array .

2 a [5] = 0 ; // a [o f f s e t o f 5] = 0
3 ∗(a+5) = 0 ; // pointed by (a+5) = 0

3.3.5 Pointer intialization
When declaring pointers we may want to explicitly specify which variable we want them to point to:

1 i n t number ;
2 i n t ∗tommy = &number ;
3 // The behavior o f t h i s code i s equ iva l en t to
4 i n t number ;
5 i n t ∗tommy ;
6 tommy = &number ;

When a pointer initialization takes place we are always assigning the reference value to where the pointer
points (tommy), never the value being pointed (*tommy).
As in the case of arrays, the compiler allows the special case that we want to initialize the content at which
the pointer points with constants at the same moment the pointer is declared:

1 char ∗ t e r r y = ” h e l l o ” ;

In this case, memory space is reserved to contain ”hello” and then a pointer to the first character of this
memory block is assigned to terry.

It is important to indicate that terry contains the value 1702, and not ’h’ nor ”hello”

The pointer terry points to a sequence of characters and can be read as if it was an array,we can access
the fifth element of the array with any of these two expression:

1 ∗(t e r r y +4)
2 t e r r y [4]

3.3.6 Pointer arithmetics
To conduct arithmetical operations on pointers is a little different than to conduct them on regular integer
data types. To begin with, only addition and subtraction operations are allowed to be conducted with
them.
But both addition and subtraction have a different behavior with pointers according to the size of the data
type to which they point.

let’s assume that in a given compiler for a specific machine, char takes 1 byte, short takes 2 bytes and
long takes 4.

www.tenji.org 20 Tenjiorg

supahaka

Compound data types CPP
;A<

1 char ∗mychar ; // po int to 1000
2 shor t ∗myshort ; // po int to 2000
3 long ∗mylong ; // po int to 3000
4

5 mychar++; // po int to 1001
6 myshort++;// po int to 2002
7 mylong++; // po int to 3004
8 // I t would happen exac t l y the same i f we wr i t e :
9 mychar = mychar + 1 ;

10 myshort = myshort + 1 ;
11 mylong = mylong + 1 ;

Both the increase (++) and decrease (–) operators have greater operator precedence than the derefer-
ence operator (*).
Therefore, the following expression may lead to confusion:

1 // those exp r e s s i on are equ iva l en t
2 ∗p++ ;
3 ∗(p++) ;

If we write :
1 ∗p++ = ∗q++;
2 // Because ++ has a h igher precedence than ∗ I t would be roughly equ iva l en t to

:
3 ∗p = ∗q ;
4 ++p ;
5 ++q ;

3.3.7 Pointers to pointers
C++ allows the use of pointers that point to pointers,we only need to add an asterisk (*) for each level of
reference in their declarations:

1 char a ;
2 char ∗ b ;
3 char ∗∗ c ;
4 a = ’ z ’ ;
5 b = &a ;
6 c = &b ;

www.tenji.org 21 Tenjiorg

supahaka

Compound data types CPP
;A<

The value of each variable is written inside each cell; under the cells are their respective addresses in memory.

• c has type char** and a value of 8092

• *c has type char* and a value of 7230

• **c has type char and a value of ’z’

3.3.8 Void pointers
The void type of pointer is a special type of pointer. In C++, void represents the absence of type, so void
pointers are pointers that point to a value that has no type.
This allows void pointers to point to any data type, in exchange he data pointed by them cannot be directly
dereferenced.
One of its uses may be to pass generic parameters to a function

3.3.9 Null pointer
A null pointer is a value that any pointer may take to represent that it is pointing to ”nowhere”.

1 i n t ∗ p ;
2 p = 0 ; // p has a n u l l po in t e r va lue

3.3.10 Pointers to functions
The ty../pic/3316al use of this is for passing a function as an argument to another function, since these
cannot be passed dereferenced.
In order to declare a pointer to a function we have to declare it like the prototype of the function except
that the name of the function is enclosed between parentheses () and an asterisk (*) is inserted before the
name:

1 #inc lude <iostream>
2 us ing namespace std ;
3 i n t add i t i on (i n t a , i n t b) { re turn (a+b) ; }
4 i n t sub t ra c t i on (i n t a , i n t b) { re turn (a−b) ; }
5 i n t opera t i on (i n t x , i n t y , i n t (∗ f u n c t o c a l l) (int , i n t)) {
6 i n t g ;
7 g = (∗ f u n c t o c a l l) (x , y) ;
8 re turn (g) ;
9 }

10 i n t main () {
11 i n t m, n ;
12 i n t (∗ minus) (int , i n t) = subt ra c t i on ; //minus i s a po in t e r to a func t i on that has

two parameters
13 m = operat ion (7 , 5 , add i t i on) ;
14 n = operat ion (20 , m, minus) ;
15 cout <<n ;

www.tenji.org 22 Tenjiorg

supahaka

Compound data types CPP
;A<

16 re turn 0 ;
17 }
18

19 Output :
20 8

3.4 Dynamic memory
if we need a variable amount of memory that can only be determined during runtime we must use dynamic
memory.

3.4.1 Operators new and new[]
In order to request dynamic memory we use the operator new followed by a data type specifier.
It returns a pointer to the beginning of the new block of memory allocated.

1 po in t e r = new type // a l l o c a t e memory to conta in one s i n g l e element
2 po in t e r = new type [number of e lements] // a s s i gn a block (an array) o f e lements o f

type type ,
3 // exemple
4 i n t ∗ bobby ;
5 bobby = new i n t [5] ;

The system dynamically assigns space for five elements of type int and returns a pointer to the first element
of the sequence, which is assigned to bobby.
Therefore, now, bobby points to a valid block of memory with space for five elements of type int.

Difference between declaring a normal array and assigning dynamic memory to a pointer

the dynamic memory allocation allows us to assign memory during the execution of the program (runtime)
using any variable or constant value as its size.

3.4.2 Check if the allocation was successful
Computer memory is a limited resource, when a memory allocation fails, terminating the program, the
pointer returned by new is a null pointer.

1 i n t ∗ bobby ;
2 bobby = new (nothrow) i n t [5] ;
3 i f (bobby == 0) {
4 // e r r o r a s s i g n i n g memory . Take measures .
5 } ;

www.tenji.org 23 Tenjiorg

supahaka

Compound data types CPP
;A<

3.4.3 Operators delete and delete[]
Since the necessity of dynamic memory is usually limited to specific moments within a program, once it is
no longer needed it should be freed so that the memory becomes available again.

1 d e l e t e po in t e r ; // d e l e t e memory a l l o c a t e d f o r a s i n g l e element
2 d e l e t e [] po in t e r ; // d e l e t e memory a l l o c a t e d f o r a r rays o f e lements .

The value passed as argument to delete must be a pointer to a memory block previously allocated with
new.

3.5 Data Structure
A data structure is a group of data elements grouped together under one name. These data elements,
known as members, can have different types and different lengths.

1 s t r u c t structure name {
2 member type1 member name1 ;
3 member type2 member name2 ;
4 member type3 member name3 ;
5 .
6 .
7 } object names ;

• structure name is a name for the structure type

• Right at the end of the struct declaration, and before the ending semicolon, we can use the optional
field object name to directly declare objects of the structure type.

we have to know is that a data structure creates a new type: Once a data structure is declared, a new type
with the identifier specified as structure name is created and can be used in the rest of the program

1 s t r u c t product {
2 i n t weight ;
3 f l o a t p r i c e ;
4 } ;
5 product apple ;
6 product banana , melon ;

We can use a dot (.) to operate directly with the objects member as if they were standard variables.
1 apple . weight
2 apple . p r i c e
3 banana . weight
4 banana . p r i c e
5 melon . weight
6 melon . p r i c e

3.5.1 Pointer to structures
Like any other type, structures can be pointed by its own type of pointers.
The arrow operator (− >) is a dereference operator that is used exclusively with pointers to objects with
members.

www.tenji.org 24 Tenjiorg

supahaka

Compound data types CPP
;A<

1 s t r u c t movies t {
2 s t r i n g t i t l e ;
3 i n t year ;
4 } ;
5 movies t amovie ;
6 movies t ∗ pmovie ;
7 // the f o l l o w i n g code would a l s o be v a l i d
8 pmovie = &amovie ;
9 // The f o l l o w i n g code i s equ iva l en t to (∗ pmovie) . t i t l e

10 pmovie−>year ;
11 // note that ∗pmovie . t i t l e i s equ iva l en t to ∗(pmovie . t i t l e)

3.5.2 Nesting structures
Structures can also be nested so that a valid element of a structure can also be in its turn another structure.

1 s t r u c t movies t {
2 s t r i n g t i t l e ;
3 i n t year ;
4 } ;
5 s t r u c t f r i e n d s t {
6 s t r i n g name ;
7 s t r i n g emai l ;
8 movies t f a v o r i t e m o v i e ;
9 } c h a r l i e , maria ;

10 f r i e n d s t ∗ p f r i e n d s = &c h a r l i e ;
11 // we could use any o f the f o l l o w i n g e x p r e s s i o n s :
12 c h a r l i e . name
13 maria . f a v o r i t e m o v i e . t i t l e
14 // the two f o l l o w i n g e x p r e s s i o n s are the same member
15 c h a r l i e . f a v o r i t e m o v i e . year
16 p f r i ends −>f a v o r i t e m o v i e . year

www.tenji.org 25 Tenjiorg

supahaka

Chapter 4

Object Oriented Programming

4.1 Classes
A class is an expanded concept of a data structure:it can hold both data and functions.
An object is an instantiation of a class.

1 c l a s s c lass name {
2 a c c e s s s p e c i f i e r 1 :
3 member1 ;
4 a c c e s s s p e c i f i e r 2 :
5 member2 ;
6 . . .
7 } object names ;

The body of the declaration can contain members, that can be either data or function declarations,and
optionally access specifiers.

An access specifier is one of the following three keywords: private, public or protected. These specifiers
modify the access rights that the members following them acquire:

• private (accessible from members of the same class), default access.

• protected (accessible form members from the same class and from their derived classes)

• public (accessible from anywhere)

1 c l a s s CRectangle {
2 i n t x , y ;
3 pub l i c :
4 void s e t v a l u e s (int , i n t) ;
5 i n t area (void) ;
6 } r e c t ;

We can to any of the public members of the object as if they were normal functions or normal variables,
just by putting the object’s name followed by a dot (.) and then the name of the member.

1 r e c t . s e t v a l u e s (3 , 4) ;
2 myarea = r e c t . area () ;

The two colons ”::” is used to define a member of a class from outside the class definition.

26

supahaka

Object Oriented Programming CPP
;A<

1 void CRectangle : : s e t v a l u e s (i n t a , i n t b) {
2 x = a ;
3 y = b ;
4 }

That is the basic concept of object-oriented programming: Data and functions are both members of the
object.

4.1.1 Constructors and destructors
Constructors

A class can include a special function called constructor, which is automatically called whenever a new
object of this class is created.
This constructor function must have the same name as the class, and cannot have any return type; not
even void.

1 #inc lude <iostream>
2 us ing namespace std ;
3 c l a s s CRectangle {
4 i n t width , he ight ;
5 pub l i c :
6 CRectangle (int , i n t) ;
7 i n t area () { re turn (width∗ he ight) ; }
8 } ;
9 CRectangle : : CRectangle (i n t a , i n t b) {

10 width = a ;
11 he ight = b ;
12 }
13 i n t main () {
14 CRectangle r e c t (3 , 4) ;
15 CRectangle r ec tb (5 , 6) ;
16 cout << ” r e c t area : ” << r e c t . area () << endl ;
17 cout << ” rec tb area : ” << r ec tb . area () << endl ;
18 re turn 0 ;
19 }
20 −−−−−−−−−−−−−−−−−
21 Output :
22 r e c t area : 12
23 r ec tb area : 30

Constructors cannot be called explicitly as if they were regular member functions. They are only executed
when a new object of that class is created.

Overloading

A constructor can also be overloaded with more than one function that have the same name but different
types or number of parameters.

1 #inc lude <iostream>
2 us ing namespace std ;
3 c l a s s CRectangle {
4 i n t width , he ight ;

www.tenji.org 27 Tenjiorg

supahaka

Object Oriented Programming CPP
;A<

5 pub l i c :
6 CRectangle () ;
7 CRectangle (int , i n t) ;
8 i n t area (void) { re turn (width∗ he ight) ; }
9 } ;

10 CRectangle : : CRectangle () {
11 width = 5 ;
12 he ight = 5 ;
13 }
14 CRectangle : : CRectangle (i n t a , i n t b) {
15 width = a ;
16 he ight = b ;
17 }
18 i n t main () {
19 CRectangle r e c t (3 , 4) ;
20 CRectangle r ec tb ;
21 cout << ” r e c t area : ” << r e c t . area () << endl ;
22 cout << ” rec tb area : ” << r ec tb . area () << endl ;
23 re turn 0 ;
24 }
25 −−−−−−−−−−−−−
26 Output :
27 r e c t area : 12
28 r ec tb area : 25

Important : Notice how if we declare a new object and we want to use its default constructor (the one
without parameters), we do not include parentheses ():

1 CRectangle r ec tb ; // r i g h t
2 CRectangle r ec tb () ; // wrong !

Default constructor

The compiler creates a default constructor for you if you do not specify your own. It provides three special
member functions in total that are implicitly declared

• the copy constructor

• the copy assignemnt operator

• the default destructor

The copy constructor and the copy assignment operator copy all the data contained in another object to
the data members of the current object.
it would be somthing like

1 Classname : : Classname (const Classname& rv) {
2 a=rv . a ; b=rv . b ; c=rv . c ;
3 }

Therefore
1 // us ing the con s t ruc to r maded by the programmers
2 Classname ob j e c t1 (2 , 3) ;
3 // us ing the d e f a u l t cons t ruc to
4 Classname ob j e c t2 (ob j e c t1) ; // we copy the ob j e c t1

www.tenji.org 28 Tenjiorg

supahaka

Object Oriented Programming CPP
;A<

Destructor

The destructor fulfills the opposite functionality. It is automatically called when an object is destroyed,
either because its scope of existence has finished or because it is an object dynamically assigned and it is
released using the operator delete.
The destructor must have the same name as the class, but preceded with a tilde sign (∼) and it must also
return no value.

The use of destructors is especially suitable when an object assigns dynamic memory during its lifetime
and at the moment of being destroyed we want to release the memory that the object was allocated.

1 #inc lude <iostream>
2 us ing namespace std ;
3 c l a s s CRectangle {
4 i n t ∗width , ∗ he ight ;
5 pub l i c :
6 CRectangle (int , i n t) ;
7 ˜CRectangle () ;
8 i n t area () { re turn (∗ width ∗ ∗ he ight) ; }
9 } ;

10 CRectangle : : CRectangle (i n t a , i n t b) {
11 width = new i n t ;
12 he ight = new i n t ;
13 ∗width = a ;
14 ∗ he ight = b ;
15 }
16 CRectangle : : ˜ CRectangle () {
17 d e l e t e width ;
18 d e l e t e he ight ;
19 }

4.1.2 Pointers to classes
A class becomes a valid type, so we can use the class name as the type for the pointer.
As it happened with data structures, in order to refer directly to a member of an object pointed by a
pointer we can use the arrow operator (− >) of indirection.

4.1.3 Overloading operators
When you define a class, you are actually creating a new type.
Most of the C++ operators can be overloaded to apply to your new class type.

To overload an operator in order to use it with classes we declare operator functions, which are regular
functions whose names are the operator keyword followed by the operator sign that we want to overload.

1 type operator s i gn (parameters) { /∗ . . . ∗/ }
2

Example :

www.tenji.org 29 Tenjiorg

supahaka

Object Oriented Programming CPP
;A<

1 // ve c t o r s : ove r l oad ing ope ra to r s example
2 #inc lude <iostream>
3 us ing namespace std ;
4 c l a s s CVector {
5 pub l i c :
6 i n t x , y ;
7 CVector () {} ;
8 CVector (int , i n t) ;
9 CVector operator + (CVector) ;

10 } ;
11 CVector : : CVector (i n t a , i n t b) {
12 x = a ;
13 y = b ;
14 }
15 CVector CVector : : operator+ (CVector param) {
16 CVector temp ;
17 temp . x = x + param . x ;
18 temp . y = y + param . y ;
19 re turn (temp) ;
20 }
21 i n t main () {
22 CVector a (3 , 1) ;
23 CVector b (1 , 2) ;
24 CVector c ;
25 c = a + b ;
26 cout << c . x << ” , ” << c . y ;
27 re turn 0 ;
28 }
29 −−−−−−−−−−−−−−
30 Output :
31 4 ,3

Both expressions are equivalent :
1 c = a + b ;
2 c = a . operator+ (b) ;

4.1.4 The keyword this
The keyword this represents a pointer to the object whose member function is being executed. It is a
pointer to the object itself.
Example :

1 #inc lude <iostream>
2 us ing namespace std ;
3 c l a s s CDummy {
4 pub l i c :
5 i n t i s i t me (CDummy& param) ;
6 } ;
7 i n t CDummy: : i s i tm e (CDummy& param)
8 {
9 i f (¶m == t h i s) re turn true ;

10 e l s e re turn f a l s e ;
11 }

www.tenji.org 30 Tenjiorg

supahaka

Object Oriented Programming CPP
;A<

12 i n t main () {
13 CDummy a ;
14 CDummy∗ b = &a ;
15 i f (b−>i s i t me (a))
16 cout << ” yes , &a i s b” ;
17 re turn 0 ;
18 }

4.1.5 Static members
Static data members of a class are also known as ”class variables”, because there is only one unique value
for all the objects of that same class. Their content is not different from one object of this class to another.
it may be used for a variable within a class that can contain a counter with the number of objects of that
class that are currently allocated

1 #inc lude <iostream>
2 us ing namespace std ;
3 c l a s s CDummy {
4 pub l i c :
5 s t a t i c i n t n ;
6 CDummy () { n++; } ;
7 ˜CDummy () { n−−; } ;
8 } ;
9 i n t CDummy: : n=0;

10 i n t main () {
11 CDummy a ;
12 CDummy b [5] ;
13 CDummy ∗ c = new CDummy;
14 cout << a . n << endl ;
15 d e l e t e c ;
16 cout << CDummy: : n << endl ;
17 re turn 0 ;
18 }

In fact, static members have the same properties as global variables but they enjoy class scope.
we can only include the prototype (its declaration) in the class declaration but not its definition (its
initialization).
In order to initialize a static data-member we must include a formal definition outside the class.

www.tenji.org 31 Tenjiorg

supahaka

Chapter 5

Input/Output with files

C++ provides the following classes to perform output and input of characters to/from files:

• ofstream: Stream class to write on files.

• ifstream: Stream class to read from files.

• fstream: Stream class to both read and write from/to files.

5.1 Open a file
In order to open a file with a stream object we use its member function open():

1 open (f i l ename , mode) ;

Where filename representing the name of the file to be opened and mode is an optional parameter with a
combination of the following flags:
ios::in Open for input operations.
ios::out Open for output operations.
ios::binary Open in binary mode.

ios::ate Set the initial position at the end of the file. If this flag is not set to any value,
the initial position is the beginning of the file.

ios::app
All output operations are performed at the end of the file,
appending the content to the current content of the file.

This flag can only be used in streams open for output-only operations.

ios::trunc If the file opened for output operations already existed before,
its previous content is deleted and replaced by the new one.

All these flags can be combined using the bitwise operator OR (—). Each one of the open() member
functions of the classes ofstream, ifstream and fstream has a default mode that is used if the file is opened
without a second argument:
ofstream ios::out
ifstream ios::in
fstream ios::in | ios::out

Note that : File streams opened in binary mode perform input and output operations independently of
any format considerations.

To check if a file stream was successful opening a file, you can do it by calling to member is open()
1 i f (my f i l e . i s open ()) { /∗ ok , proceed with output ∗/ }

32

supahaka

Input/Output with files CPP
;A<

5.2 Closing a file
When we are finished with our input and output operations on a file we shall close it so that its resources
become available again.
In order to do that we have to call the stream’s member function close().

1 myf i l e . c l o s e () ;

In case that an object is destructed while still associated with an open file, the destructor automatically
calls the member function close().

5.3 Text files
Text file streams are those where we do not include the ios::binary flag in their opening mode.

5.3.1 Writing on a text file

1 #inc lude <iostream>
2 #inc lude <f stream>
3 us ing namespace std ;
4 i n t main () {
5 ofstream myf i l e (” example . txt ”) ;
6 i f (my f i l e . i s open ())
7 {
8 myf i l e << ” This i s a l i n e . \ n” ;
9 myf i l e << ” This i s another l i n e . \ n” ;

10 myf i l e . c l o s e () ;
11 }
12 e l s e cout << ”Unable to open f i l e ” ;
13 re turn 0 ;
14 }

5.3.2 reading a text file

1 #inc lude <iostream>
2 #inc lude <f stream>
3 #inc lude <s t r i ng >
4 us ing namespace std ;
5 i n t main () {
6 s t r i n g l i n e ;
7 i f s t r e am myf i l e (” example . txt ”) ;
8 i f (my f i l e . i s open ())
9 {

10 whi le (! my f i l e . e o f ())
11 {
12 g e t l i n e (myf i l e , l i n e) ;
13 cout << l i n e << endl ;
14 }
15 myf i l e . c l o s e () ;
16 }
17 e l s e cout << ”Unable to open f i l e ” ;

www.tenji.org 33 Tenjiorg

supahaka

Input/Output with files CPP
;A<

18 re turn 0 ;
19 }

The function eof() returns true in the case that the end of the file has been reached.

www.tenji.org 34 Tenjiorg

	Basics
	Fundamental data types
	Declaration and initialization of variables
	Scope of variables
	Intro to strings
	Constants
	Literals
	Defined constants
	Declared constants

	Operators
	Assignment (=)
	Arithmetic operators (+,-,*,/,%)
	Increase an decrease (++,–)
	Relational and equality operators (==, !=, >, <, >=, <=)
	Logical operators (!,&&,||)
	Comma operator (,)
	Bitwise operators
	Explicit type casting oerator
	sizeof()
	Precedence of operators

	Basic Input/Output
	Standard Output (cout)
	Standard Input (cin)

	Control Structures
	Control Structures
	block {}
	Conditional structure:if and else
	Iteration structures (loops)
	Jump statements
	The selective structure: switch

	Function
	Arguments passed by value and by reference
	Default values in parameters
	Overloaded functions
	Recursivity
	Declaring functions

	Compound data types
	Arrays
	Initializing arrays
	Accessing the values of an array
	Multidimensional arrays
	Arrays as parameters

	Character Sequences
	Pointers
	Reference operator (&)
	Dereference operator (*)
	Declaring variables of pointer types
	Pointers and arrays
	Pointer intialization
	Pointer arithmetics
	Pointers to pointers
	Void pointers
	Null pointer
	Pointers to functions

	Dynamic memory
	Operators new and new[]
	Check if the allocation was successful
	Operators delete and delete[]

	Data Structure
	Pointer to structures
	Nesting structures

	Object Oriented Programming
	Classes
	Constructors and destructors
	Pointers to classes
	Overloading operators
	The keyword this
	Static members

	Input/Output with files
	Open a file
	Closing a file
	Text files
	Writing on a text file
	 reading a text file

