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Chapter 1

INTRODUCTION

1.1 Classical Information
The most basic piece of information is called a bit, and this basically represents a yes-no answer to a
question.
To represent this mathematically we use binary numbers,a binary number can be 0 or 1.

Physically we can implement a bit with an electrical circuit
 zero volts → binary 0

+ five volts → binary 1
The smallest number n of bits required to represent m different state :

2n ≥ m

n bits can store m different messages :
log2(m) = n

A byte is a string of eight bits linked together (log2(256) = 8)

1.2 Entropy and Shannon’s information theory
To get a more accurate estimation of the information content in a signal, the key step taken by Shannon
was that he asked:

How likely is it that we are going to see a given piece of information?

And that allows us to characterize how much information we actually gain from a signal.

• If a message has a very high probability of occurrence, then we don’t gain all that much new infor-
mation when we come across it.

• On the other hand, if a message has a low probability of occurrence, when we are made of aware of
it, we gain a significant amount of information.

Shannon quantified this by taking the base 2 logarithm of the probability of a given message occurring.
The information content of a message by I, and the probability of its occurrence by p, then :

I = − log2(p)

• A message that is unlikely to occur has a low probability and therefore has a large information
content.

4



supahaka

INTRODUCTION Quantum Information Theory
;A<

• A message that is very likely to occur has a high probability and therefore has a small information
content.

Example :
Let’s suppose that the probability of an earthquake not happening tomorrow is 0.995. The information content of this fact is
I = − log2(0.995) = 0.0072.
Now the probability that an earthquake does happen tomorrow is 0.005. The information content of this piece of information is
I′ = − log2(0.005) = 7.7.6439

Now let X be a random variable characterized by a probability distribution #»p , and suppose that it can
assume one of the values x1, x2, ..., xn with probabilities p1, p2, ..., pn

The Shannon entropy of X is defined as :

H(X) = −
∑

i

pi log2(pi)

• If we are certain what the message is, the Shannon entropy is zero.

• The more uncertain we are as to what comes next, the higher the Shannon entropy.

Example :
Suppose that we have a signal that always transmits a “2”, The probability of obtaining a 2 is 1,
So the entropy or disorder is : H = − log2(1) = 0
A signal that has all the same characters with no changes has no disorder and hence no entropy.

www.tenji.org 5 Tenjiorg
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Chapter 2

QUBITS AND QUANTUM STATES

2.1 The Qubit
Qubit is the basic unit of information in quantum computing which is short for quantum bit.

A qubit can exist in the state |0⟩ , |1⟩ or also in a superposition state


|ψ⟩ = |0⟩
|ψ⟩ = |1⟩
|ψ⟩ = α |0⟩ + β |1⟩

Where |α|2 and |β|2 tells us the probability of finding |ψ⟩ in state |0⟩ and |1⟩.
|α|2 + |β|2 = 1
|α|2 = (α)(α *) and |β|2 = (β)(β *)
When a qubit is measured, it is only going to be found to be in the state |0⟩ or the state |1⟩.

2.2 Vector spaces
A vector space V is a nonempty set with elements u, v called vectors for which the following two operations
are defined:

• Vector addition ,w ∈ V,w = u+ v

• Scalar multiplication,α ∈ C, αu ∈ V

in addition :

• Associativity of addition : (u+ v) + w = u+ (v + w)

• zero vector such as : u+ 0 = 0 + u = u

• additive inverse :u+ (−u) = (−u) + u = 0

• addition of vectors is commutative : u+ v = v + u

One particular vector space that is important in quantum computation is the vector space is C.
we label the elements of C by |a⟩ , |b⟩ , |c⟩.
we write down a vector as column vector :

|a⟩ =


a1
a2
...
an



6



supahaka

QUBITS AND QUANTUM STATES Quantum Information Theory
;A<

Multiplication of a vector by a scalar proceeds as :

α |a⟩ = α


a1
a2
...
an

 =


αa1
αa2
...
αan


Vector addition :

|a⟩ + |b⟩ =


a1
a2
...
an

+


b1
b2
...
bn

 =


a1 + b1
a2 + b2
...

an + bn



2.3 Linear combinations of vectors
A linear combination of these vectors is given by

α1 |v1⟩ + α2 |v2⟩ + ...+ αn |vn⟩ =
n∑

i=1
αi |vi⟩

An arbitrary qubit can be writes as |ψ⟩ = α |0⟩ + β |1⟩

|ψ⟩ =
(
α
β

)
=
(
α
0

)
+
(

0
β

)
= α

(
1
0

)
+ β

(
0
1

)
=⇒ we identify |0⟩ =

(
1
0

)
and |1⟩ =

(
0
1

)

Linear independence

if one vector of the set can be written as a linear combination of the other vectors in the set, then the set
is linearly dependent.
a set of vectors is that of linear independence if:

α1 |v1⟩ + α2 |v2⟩ + ...+ αn |vn⟩ = 0

Note that :
A spanning set of vectors for a given space V is not unique.

2.4 Basis and dimension
When a set of vectors is linearly independent and they span the space, the set is known as a basis.
We can express any vector in the space V in terms of a linear expansion on a basis set.
The dimension of a vector space V is equal to the number of elements in the basis set.
A quantum state |ψ⟩ can be written as a linear combination of a basis set |vi⟩ with complex coefficients of
expansion ci as :

|ψ⟩ =
n∑

i=1
ci |vi⟩ = c1 |v1⟩ + c2 |v2⟩ + ...+ cn |vn⟩

The modulus squared of a given coefficient ci gives the probability that measurement finds the system in
the state |vi⟩.

www.tenji.org 7 Tenjiorg
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2.5 Inner Products
We write the inner product between two vectors |u⟩ , |v⟩ with the notation ⟨u|v⟩.

The inner product is a complex number, the conjugate of this complex number satisfies : ⟨u|v⟩ * = ⟨v|u⟩.
The norm of a vector u is : ||u|| =

√
⟨u|u⟩.

|u⟩ † = ⟨u| →


a1
a2
...
an

 † = (a1
* a2

* ...a3
*)

2.6 Orthonormality
We say that |u⟩ , |v⟩ are orthogonal when

⟨u|v⟩ = 0
When the norm of a vector is unity, we say that vector is normalized

⟨a|a⟩ = 1

If each element of a set of vectors is normalized and the elements are orthogonal with respect to each other,
we say the set is orthonormal.

2.6.1 GRAM-SCHMIDT orthogonalisation
An orthonormal basis can be produced from an arbitrary basis by application of the Gram-Schmidt or-
thogonalisation process.
let {|v1⟩ , |v2⟩ , ..., |vn⟩},be a basis for an inner product space V .
The Gram-Schmidt process constructs an orthogonal basis |wi⟩ as follows :
|w1⟩ = |v1⟩

|w2⟩ = |v2⟩ − ⟨w1|v2⟩
⟨w1|w1⟩

|w1⟩
....
|wn⟩ = |vn⟩ − ⟨w1|vn⟩

⟨w1|w1⟩
|w1⟩ − ⟨w2|vn⟩

⟨w2|w2⟩
|w2⟩ − ...− ⟨wn−1|vn⟩

⟨wn−1|wn−1⟩
|wn−1⟩

To form an orthonormal set using the Gram-Schmidt procedure, divide each vector by its norm.

2.7 The Cauchy-Schwartz and triangle inequalities
The Cauchy-Schwarz inequality :

| ⟨ψ|ϕ⟩ |2 ≤ ⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩

The triangle inequality : √
⟨ψ + ϕ|ψ + ϕ⟩ ≤

√
⟨ψ|ψ⟩ +

√
⟨ϕ|ϕ⟩

www.tenji.org 8 Tenjiorg



supahaka

Chapter 3

MATRICES AND OPERATORS

An operator is a mathematical rule that can be applied to a function to transform it into another function.
An operator Â is a mathematical rule that transforms a ket |ψ⟩ into another ket that we will call |ϕ⟩:

Â |ψ⟩ = |ϕ⟩

Operators can act also on bras:
Â ⟨µ| = ⟨ν|

We say that an operator is linear if :

Â(α |ψ1⟩ + β |ψ2⟩) = αÂ |ψ1⟩ + βÂ |ψ2⟩

The simplest operator is the identity operator Î :

Î |ψ⟩ = |ψ⟩

The zero operator :
0̂ |ψ⟩ = 0

3.1 Outer Products
The product of a ket |ψ⟩ with a bra ⟨ϕ| which is written as |ψ⟩ ⟨ϕ|, this quantity is an operator.

(|ψ⟩ ⟨ϕ|) |ξ⟩ = |ψ⟩ ⟨ϕ|ξ⟩ = (⟨ϕ|ϕ|ξ⟩) |ψ⟩

3.2 The closure relation
n∑

i=1
|ui⟩ ⟨ui| = Î

The closure relation is often useful in manipulating expressions.
For example if ⟨ui|ψ⟩ = ci, an arbitrary state |ψ⟩ can be expanded in terms of the basis {|ui⟩} :

|ψ⟩ = Î |ψ⟩ =
(

n∑
i=1

|ui⟩ ⟨ui|
)

|ψ⟩ =
n∑

i=1
|ui⟩ ⟨ui|ψ⟩ =

n∑
i=1

ci |ui⟩

9
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3.3 Representations of operators using matrices
We can find the matrix elements of the operator using the closure relation :

Â = ÎÂÎ =
(∑

i

|ui⟩ ⟨ui|
)
Â

∑
j

|uj⟩ ⟨uj|

 =
∑
i,j

⟨ui|Â|uj⟩ |ui⟩ ⟨uj|

Â =


⟨u1|Â|u1⟩ ⟨u1|Â|u2⟩ ... ⟨u1|Â|un⟩
⟨u2|Â|u1⟩ ⟨u2|Â|u2⟩ ... ⟨u2|Â|un⟩

. . .
⟨un|Â|un⟩


When the matrix representation of an operator is given, it is written with respect to a certain basis.
in general :

⟨ui|Â|uj⟩ ≠ ⟨νi|Â|νj⟩

3.4 Hermitian,Unitary, and Normal operators
An operator A is said to be normal if

AA † = A † A

An operator A is said to be unitary if
UU † = U † U = I

An operator Â is said to be Hermitian if
Â = Â †

3.5 Observables
Observables are things we measure in order to characterize the quantum state of a particle

3.5.1 The Pauli operators
• σ0 |0⟩ = |0⟩ , σ0 |1⟩ = |1⟩

σ0 = Î =
(

1 0
0 1

)

• σ1 |0⟩ = |1⟩ , σ1 |1⟩ = |0⟩

σ1 = X =
(

0 1
1 0

)

• σ2 |0⟩ = −i |1⟩ , σ2 |1⟩ = i |0⟩

σ2 = Y =
(

0 −i
i 0

)

• σ3 |0⟩ = |0⟩ , σ3 |1⟩ = − |1⟩

σ3 = Z =
(

1 0
0 −1

)

www.tenji.org 10 Tenjiorg
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3.6 Eigenvalues and Eigenvectors
A given vector is said to be an eigenvector of an operator A if the following equation is satisfied

A |ψ⟩ = λ |ψ⟩

The number λ is called an eigenvalue of the operator A.
A common problem in quantum mechanics is the following:
given an operator, find its eigenvalues and eigenvectors.
The first step in this process is to find the eigenvalues using what is known as the characteristic equation :

det |A− λI| = 0

3.7 Spectral Decomposition
An operator A belonging to some vector space that is normal and has a diagonal matrix representation
with respect to some basis of that vector space.
Â satisfies the spectral decomposition for the basis |ui⟩ :

A =
n∑

i=1
ai |ui⟩ ⟨ui|

Where ai are the eigenvalues.

3.8 The trace of an operator
The trace of the operator is the sum of the diagonal elements.

Tr(A) =
n∑

i=1
⟨ui|A|ui⟩

Proprieties

• The trace is cyclic,Tr(ABC) = Tr(CAB) = Tr(BCA)

• The trace of an outer product is the inner product

Tr(|ϕ⟩ ⟨ψ|) = ⟨ψ|ϕ⟩

Tr(A |ψ⟩ ⟨ϕ|) = ⟨ψ|A|ϕ⟩

• The trace is basis independent.
let |ui⟩ and |νi⟩ be two bases for some Hilbert space,then Tr(A) =

∑
⟨ui|A|ui⟩ =

∑
⟨νi|A|νi⟩

• The trace of an operator is equal to the sum of its eigenvalues.

• The trace is linear
Tr(αA) = αTr(A), T r(A+B) = Tr(A) + Tr(B)
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3.9 The expectation value of an operator
The expectation value of an operator is the mean or average value of that operator with respect to a given
quantum state.
if a quantum state |ψ⟩ is prepared many times, and we measure a given operator A each time , the average
of measurement result is the expectation value

⟨A⟩ = ⟨ψ|A|ψ⟩

3.10 Function of operators
The function of an operator can be found by calculating its Taylor expansion :

f(A) =
∞∑

n=0
anA

n

If an operator A is normal and has a spectral expansion given by A =
∑

i

ai |ui⟩ ⟨ui| then

f(A) =
∑

i

f(ai) |ui⟩ ⟨ui|

3.11 Unitary transformation
A method known as a unitary transformation can be used to transform the matrix representation of an
operator in one basis to a representation of that operator in another basis.
The change of basis matrix from a basis |ui⟩ to a basis |vi⟩ is given by :

U =
(

⟨ν1|u1⟩ ⟨ν1|u2⟩
⟨ν2|u1⟩ ⟨ν2|u2⟩

)

We write a state vector |ψ⟩ given in the |ui⟩ basis in terms of the new |νi⟩ basis as

|ψ′⟩ = U |ψ⟩

3.12 Projection operators
A projection operator is an operator that can be formed by writing the outer product using a single ket

P = |ψ⟩ ⟨ψ|

A projection operator is hermitian.
if the state |ψ⟩ is normalized then a projection operator is equal to its own square :

P 2 = P

3.13 Commutator
The commutator of two operators A and B is defined as :

[A,B] = AB −BA
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When [A,B] = 0, we say that the operators A and B commute.
The commutator is antisymmetric :

[A,B] = −[B,A]
The commutator is linear :

[A,B + C] = [A,B] + [A,C]
We can use the following rule of distributivity :

[A,BC] = [A,B]C +B[A,C]

3.14 Uncertainty
The uncertainty ∆A,is a statistical measure of the spread of measurements about the mean

∆A =
√

⟨A2⟩ − ⟨A⟩2

Two operators A and B, it can be shown that the product of their uncertainties satisfies

∆A∆B ≥ 1
2 |⟨[A,B]⟩|

This is a generalization of the famous Heisenberg uncertainty principle

3.15 Singular Value Decomposition (SVD)
Every m× n matrix factors into

A = UΣV T

Where


U is m×m orthogonal matrix
Σ is m× n diagonal matrix
V T is n× n orthogonal matrix

A =
(
u1 u2

)(σ1 0
0 σ2

)(
vT

1
vT

2

)

σ Are the singular values
v Are the right singular vectors
u Are the left singular vectors

What are U,Σ and V

ATA = (V ΣTUT )UΣV T = V ΣT ΣV T , ΣT Σ is a diagonal matrix.
By the usual diagonalisation the eigenvalue λ for the matrix ATA are in ΣT Σ and the eigenvectors are in
V .
Then λ for ATA are the singular value squared σ2 for A.
Now we have Σ and V how we get hold of U
AAT = UΣV TV ΣTUT = UΣΣTUT

So U is eigenvector matrix for AAT ,AAT and ATA have the same eigenvalues

Refference : MIT RES.18-009 Learn Differential Equations: Up Close with Gilbert Strang and Cleve Moler, Fall 2015
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3.16 THE POSTULATES OF QUANTUM MECHANICS

3.16.1 Postulate 1 : The state of a System
• The state of a quantum system is a vector |ψ(t)⟩ in a Hilbert space.

• The state |ψ(t)⟩ contains all information that we can obtain about hte system.

• We work with normalized states such that ⟨ψ|ψ⟩ = 1.

3.16.2 Postulate 2: Observable quantities represented by operators
• To every dynamical variable A that is a physically measurable quantity, there corresponds an operator
A.

• The operator A is Hermitian and its eigenvectors form a complete orthonormal basis of the vector
space.

3.16.3 Postulate 3: Measurements
• The possible results of measurement of a dynamical variable A are the eigenvalues an of the operator
A corresponding to that variable.

• A =
∑

n

anPn where Pn is the projection operators Pn = |un⟩ ⟨un|, The probability of obtaining

measurement result an is given by :
Pr(an) = ⟨ψ|Pn|ψ⟩

• The probability amplitude cn = ⟨un|ψ⟩ gives us the probability of obtaining measurement result an

as
Pr(an) = | ⟨un|ψ⟩ |2

⟨ψ|ψ⟩
= |cn|2

⟨ψ|ψ⟩

• A measurement result an causes the collapse of the wave-function,meaning that the system is left in
state |un⟩

3.16.4 Postulate 4: Time evolution of the system
• The time evolution oa a closed quantum system is governed by the Schrodinger equation:

iℏ
∂

∂t
|ψ⟩ = H |ψ⟩

Where H is the Hamiltonian

• The state of the system at a later time t is given by

|ψ(t)⟩ = e−i Ht
ℏ |ψ(0)⟩

Therefore the time evolution of a quantum state is governed by the unitary operator

U = e−i Ht
ℏ
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TENSOR PRODUCTS

In the context of quantum information processing, it is necessary to work with multi particles states.
Suppose that H1 and H2 are two Hilbert spaces of dimension N1 and N2.
We can put these two Hilbert spaces together to construct a larger Hilbert space H

H = H1 ⊗H2

The dimension of H : dim(H) = N1N2

Let |ϕ⟩ ∈ H1 and |ξ⟩ ∈ H2, we can construct a vector |ψ⟩ ∈ H :
|ψ⟩ = |ϕ⟩ ⊗ |ξ⟩

• The tensor product of two vectors is linear.
|ϕ⟩ ⊗ [|ξ1⟩ + |ξ2⟩] = |ϕ⟩ ⊗ |ξ1⟩ + |ϕ⟩ ⊗ |ξ2⟩
[|ϕ1⟩ + |ϕ2⟩] ⊗ |ξ⟩ = |ϕ1⟩ ⊗ |ξ⟩ + |ϕ2⟩ ⊗ |ξ⟩

• Tensor product is linear with respect to scalars
|ϕ⟩ ⊗ (α |ξ⟩) = α |ϕ⟩ ⊗ |ξ⟩

• The order of the tensor product is not relevant
|ϕ⟩ ⊗ |ξ⟩ = |ξ⟩ ⊗ |ϕ⟩

4.1 Inner product

Suppose
|ψ1⟩ = |ϕ1⟩ ⊗ |ξ1⟩

|ψ2⟩ = |ϕ2⟩ ⊗ |ξ2⟩

⟨ψ1|ψ2⟩ = (⟨ϕ1| ⟨ξ1|)(|ϕ2⟩ |ξ2⟩) = ⟨ϕ1|ϕ2⟩ ⟨ξ1|ξ2⟩

4.2 Matrix Representation

|ϕ⟩ =
(
a
b

)
and |ξ⟩ =

(
c
d

)
The tensor product :

|ϕ⟩ ⊗ |ξ⟩ =
(
a
b

)
⊗
(
c
d

)
=


ac
ad
bc
bd


15
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4.3 Operators and tensor product
Let A be an operator that acts on vectors |ϕ⟩, and B act on vectors |ξ⟩

(A⊗B) |ψ⟩ = (A⊗B)(|ϕ⟩ ⊗ |ξ⟩) = (A |ϕ⟩) ⊗ (B |ξ⟩)

4.4 Tensor Products of matrices
Let

A =
(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
The matrix representation of the tensor product A⊗B is

A⊗B =
(
a11B a12B
a21B a22B

)
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22



4.5 Note
Not all states can be written as product of states, this is what will be called later entanglement.
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THE DENSITY OPERATOR

5.1 The density operator for a pure state
When a system is in a definite state, we say the system is in a pure state.
The density operator is an average operator that will allow us to describe a statistical mixture.
The density operator for a state |ψ⟩ is given by :

ρ = |ψ⟩ ⟨ψ| =


a1
a2
...

(a1
* a2

* . . .
)

=


|a1|2 a1a2

* . . .

a2a1
* |a2|2 . . .

. . .


Then, diagonal elements are probabilities of being in the state |ui⟩ :

pi = |ai|2 = ⟨ui|ψ⟩ ⟨ψ|ui⟩ = ⟨ui|ρ|ui⟩

Due to the conservation of probability the trace of the density operator is always 1

Tr(ρ) =
∑

j

⟨uj|ρ|uj⟩ =
∑

j

⟨uj|ψ⟩ ⟨ψ|uj⟩ =
∑

j

cjcj
* =

∑
j

|cj|2 = 1

5.1.1 Properties of a density operator
• The density operator is Hermitian

• Tr(ρ) = 1

• ρ is a positive operator, meaning ⟨u|ρ|u⟩ ≥ 0 for any state vector |u⟩

If a system is in a pure state |ψ⟩ then :
ρ2 = ρ

Tr(ρ2) = 1

17
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5.2 Using the density operator to find the expectation value
The expectation value of an operator A can be written in terms of the density operator as:

⟨A⟩ =
n∑

k,l=1
⟨ul|ρ|uk⟩ ⟨uk|A|ul⟩

=
n∑

l=1
⟨ul|ρ(

n∑
k=1

|uk⟩ ⟨uk|)A|ul⟩

=
n∑

l=1
⟨ul|ρA|ul⟩

= Tr(ρA)

5.3 Time evolution

iℏ
dρ

dt
= [H, ρ]

For a closed system the time evolution of the density operator can also be written in terms of a unitary
operator U

ρ(t) = Uρ(t0)U †

A pure state will always be a pure state if the system is “isolated” or closed.

5.4 The density operator for a mixed state
For a state |ψi⟩,denote the probability that a member of the ensemble has been prepared in the state |ψi⟩
as pi,then the density operator for the entire system is :

ρ =
n∑

i=1
piρi =

n∑
i=1

pi |ψi⟩ ⟨ψi|

5.5 Probability of obtaining a given measurement result
The probability of obtaining an can be calculated using the density operator

p(an) = ⟨un|ρ|un⟩

5.6 Characterizing mixed states
The coherence is the capability of different components of a state to interfere with one another.

• A mixed state is a classical statistical mixture of two or more states.
The state has no coherence.
Therefore the off-diagonal terms of the density operator are zero.

• A pure state will have nonzero off-diagonal terms.
Tr(ρ2) = 1 for a pure state .The same is not true in the case of mixed state.

• Tr(ρ2) < 1 for a mixed state.

• Tr(ρ2) = 1 for a pure state.
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5.7 Completely mixed states
In a completely mixed state the probability for the system to be in each given state is identical.
In that case the density operator is a constant multiple of the identity matrix.
If the state space has n dimensions, then

ρ = 1
n
I

So for a completely mixed state we have

Tr(ρ2) = Tr( 1
n2 I) = 1

n2Tr(I) = 1
n

5.8 Bloch representation
We can write any matrix as a linear combination of the sigma matrices.
Arbitrary density matrix :

ρ = a0 + #»a . #»σ

2

With


ax = Tr(σxρ)
ay = Tr(σyρ)
az = Tr(σzρ)

5.9 Partial Trace
Given bipartite system in a state ρAB

We can be interested in one of the two subsystems,we can then trace out the other one.
Reduced density matrix :

ρA = TrB(ρAB) = ⟨0B|ρAB|0B⟩ + ⟨1B|ρAB|1B⟩

ρB = TrA(ρAB) = ⟨0A|ρAB|0A⟩ + ⟨1A|ρAB|1A⟩

A reduced density matrix is that of a pure system if and only if the initial state is a pure and it is a product
of states.
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QUANTUM MEASUREMENT THEORY

6.1 Distinguishing quantum states and measurement
An act of measurement disturbs a quantum system in a fundamental way.
The measurement of a quantum system involves some type of interaction or coupling of that system with
a measuring device.
That device can be thought of as part of the larger environment which the quantum system is a part of.

If the system is initially described by some density operator ρ0,then the state of the system at time t
will be

ρt = Uρ0U
†

The dynamics of a quantum system is trace-preserving (Tr(ρ0) = Tr(ρt)).
While time evolution is trace-preserving, measurement is described by trace-decreasing quantum opera-
tions.
A quantum operation involving measurement, described by a measurement operator that we will denote
by Mm, transforms a density operator ρ according to ρ′ = MmρMm

†.
In this case Tr(ρ′) ≤ 1

6.2 Projective Measurements
The idea of making a projective measurement is based on the following notion:

Given a set of mutually exclusive possible states, what state is the system is in?

6.2.1 Properties
• A projection operator P is Hermitian and equal to its own square

P = P †, P 2 = P

• P1 and P2 orthogonal if
P1P2 |ψ⟩ = 0

• A complete set of orthogonal projection operators is one∑
i

Pi = I
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• The number of projection operators is determined by the dimension of the Hilbert space that describes
the system.
If the dimension of the Hilbert space is d and there are m projection operators

m ≤ d

• If two projection operators commute, then their product is also a projection operator.

• The probability of finding the ith outcome when a measurement is made is

Pr(i) = |Pi |ψ⟩ |2 = (Pi |ψ⟩) †(Pi |ψ⟩) = ⟨ψ|P 2
i |ψ⟩ = ⟨ψ|Pi|ψ⟩

• The probability of obtaining measurement result ai can be written as

Pr(i) = ⟨ψ|Pi|ψ⟩ = Tr(Pi |ψ⟩ ⟨ψ|)

6.2.2 Collapse of the wave function
while the state of the system prior to measurement could be a superposition of basis states after mea-
surement the system collapses to the basis state that corresponds to the measurement result that was
obtained.

|ψ′⟩ = Pi |ψ⟩√
⟨ψ|Pi|ψ⟩

6.3 Generalized measurements
We denote a measurement operator by Mm, he probability that we find measurement result m is

Pr(m) ⟨ψ|Mm
† Mm|ψ⟩

After a measurement the state of the system is

|ψ′⟩ = Mm |ψ⟩√
⟨ψ|Mm

† Mm|ψ⟩

Measurements when a system is described by a density operator.
If a quantum system is described by a density operator ρ , the probability of finding measurement result
m is

Pr(m) = Tr(Mm
† Mmρ)

If the measurement is described by a set of orthogonal projection operators Pi = |ui⟩ ⟨ui| corresponding to
measurement result i then the probability of finding that measurement result is

Pr(i) = Tr(Pi
† Piρ) = Tr(|ui⟩ ⟨ui| ρ) = ⟨ui|ρ|ui⟩

6.4 Positive operator-valued measures
Known as POVM, A POVM consists of a set of positive operators commonly denoted by Em.
The probability of obtaining measurement result m in this case is given by

Pr(m) = ⟨ψ|Em|ψ⟩

The POVM allows us to construct a more general type of measurement operator to describe measurements
where projective measurements do not apply in the real world.
A POVM allows us to describe measurements on the system without regard to the post measurement state.
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ENTANGLEMENT

One of the most unusual and fascinating aspects of quantum mechanics is the fact that particles or systems
can become entangled.
For the simplest two quantum systems case we denote the systems A and B.
If these systems are entangled, this means that the values of certain properties of system A are correlated
with the values that those properties will assume for system B.

When a system is entangled, this means that the individual component systems are really linked to-
gether as a single entity.
Any measurement that measures a part of the system is really a measurement on the entire system.

If two systems are entangled, the description of each system has to be made with reference to the state
of the other system, even if the component systems are spatially separated and non interacting.

7.1 BELL STATE
They are known as the four maximally entangled two-qubit Bell states and they form a maximally entangled
basis

• |β00⟩ = |00⟩ + |11⟩√
2

• |β01⟩ = |01⟩ + |10⟩√
2

• |β10⟩ = |00⟩ − |11⟩√
2

• |β11⟩ = |01⟩ − |10⟩√
2

7.2 When is a state entangled
Not all states |ψ⟩ ∈ HA ⊗HB are entangled.
When two systems are entangled, the state of each composite system can only be described with reference
to the other state.
If two states are not entangled, we say that they are a product state or separable.
If |ψ⟩ ∈ HA and |ϕ⟩ ∈ HB and |ξ⟩ = |ψ⟩ ⊗ |ϕ⟩, then |ξ⟩ is a product state

22



supahaka

ENTANGLEMENT Quantum Information Theory
;A<

7.3 Entanglement fidelity
Consider a density operator for a single qubit that is diagonal with respect to the computational basis

ρ = f |0⟩ ⟨0| + (1 − f) |1⟩ ⟨1|

The parameter f is known as the entanglement fidelity.
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Quantum noise and error correction

In the treatment of quantum theory we’ve used so far we have been looking at closed systems.
These are quantum systems that do not interact with the outside world.That is, an idealized model.
In reality, quantum systems interact with the outside environment.
The problem if that interactions with the environment can introduce noise and cause errors.

We are going to have to develop a mathematical formalism to describe quantum systems that interact
with the environment.
We refer to systems of this type as open systems.

8.1 Single-Qubit errors
The ability to work with superposition states is what gives quantum computers their power.
When a quantum system interacts with the environment superposition can be lost,we call this process
decoherence.
Quantum noise acts on qubits via the application of one of the operators I,X, Y, Z.

8.1.1 Bit flip errors
We have |0⟩ → |1⟩ and |1⟩ → |0⟩
This type of error is described by the X operator.

8.1.2 Phase flip errors
We have |x⟩ → (−1)x |x⟩
This type of error is described by the Z operator.

The Y operators is related to a phase flip followed by a bit flip

8.2 Quantum operations and Krauss operators
The system density operator ρ.
Φ(ρ) is a quantum operation,it is a mapping that describes the evolution of the system.
The new system density operator ρ′

Φ(ρ) = ρ′
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Unitary evolution :Φ(ρ) = UρU *

Measurement : Φ(ρ) = MmρMm
*

If we have a set of operators Ak that aren’t necessarily unitary:

Φ(ρ) =
n∑

k=1
AkρAk

*

The Ak, which are known as operation elements, cas satisfy a completeness relation
n∑

k=1
AkAk

* = I

To Calculate Ak we define :

• ρ is the density operator for the system.

• We denote the basis states of the environment by |ek⟩.

• |e0⟩ is the environment state

• σ is the density operator for the environment.

Ak = ⟨ek|U |e0⟩

8.3 Some channels

8.3.1 Depolarization channel
Quantum noise is often described in terms of channels.
The depolarization channel is known as when p is a probability that the principal system evolves into a
completely mixed state.
and (1 − p) is the probability that the system stays the same.

Φ(ρ) = (1 − p)ρ+ p
1
2I

8.3.2 Bit flip and phase flip channel
There is a probability p that nothing happens to the qubit, While there is a probability (1 − p) that there
is a bit flip error.

Φ(ρ) = pρ+ (1 − p)XρX
There is a probability p that nothing happens to the qubit, while there is a probability (1 − p) that there
is a phase flip error.

Φ(ρ) = pρ+ (1 − p)ZρZ

8.4 Amplitude damping
Real physical systems lose energy. When describing a quantum system undergoing energy dissipation
because of some type of interaction with the environment, we apply a quantum operation known as
amplitude damping.
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8.5 Phase damping
Phase damping is a quantum process that involves information loss, but unlike amplitude damping, it does
not involve energy loss. Specifically phase damping involves the loss of information about relative phases
in a quantum state.
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TOOLS OF QIT

9.1 The no-Cloning theorem
The remarkable power of a quantum computer comes from the fact a qubit can exist in a superposition.
Given this fact, can we make an exact copy of an arbitrary qubit?
It turns out the answer is no
Proof :
Consider two pure states |ψ⟩ and |ϕ⟩, and suppose that there exists a unitary operator U such that

U(|ψ⟩ ⊗ |ξ⟩) = |ψ⟩ ⊗ |ψ⟩

U(|ϕ⟩ ⊗ |ξ⟩) = |ϕ⟩ ⊗ |ϕ⟩

We take the inner product of the left hand side

(⟨ψ| ⊗ ⟨ξ| |U †)(U |ϕ⟩ ⊗ |ξ⟩) = ⟨ψ|ϕ⟩ ⟨ξ|ξ⟩ = ⟨ψ|ϕ⟩

We take the inner product of the right hand side

(⟨ψ| ⊗ ⟨ψ|)(|ϕ⟩ ⊗ |ϕ⟩) = ⟨ψ|ϕ⟩2

Then we get the equation
⟨ψ|ϕ⟩ = ⟨ψ|ϕ⟩2

The equation is true if ⟨ψ|ϕ⟩ = 0 in which case the states are orthogonal, or if |ϕ⟩ = |ψ⟩.

Thats mean that there is no unitary operator U can be used to clone arbitrary quantum states

9.2 Trace Distance
The trace distance can be used to determine how similar two states are.
Let ρ and σ be two density matrices. The trace distance δ(ρ, σ) is defined to be

δ(ρ, σ) = 1
2Tr|ρ− σ|

The trace distance acts like a metric on the Hilbert space.
The trace distance is nonnegative

0 ≤ δ(ρ, σ)
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The trace distance is symmetric :
δ(ρ, σ) = δ(σ, ρ)

The trace distance satisfies the triangle inequality

δ(ρ, σ) ≤ δ(ρ, ϑ) + δ(ϑ, σ)

If ρ = |ψ⟩ ⟨ψ| is a pure state, then δ(ρ, σ) is given by

δ(ρ, σ) =
√

1 − ⟨ψ|σ|ψ⟩

If [ρ, σ] = 0, and they are both diagonal with respect to some basis {|ui⟩} such that the eigenvalues of ρ
are ri and the eigenvalues of σ are si then

δρ, σ = 1
2Tr|σi(ri − si) |ui⟩ ⟨ui| |

9.3 Fidelity
The Fidelity can be used to determine how close one state is to another.
Let ρ and σ be two density operators.

F (ρ, σ) = Tr(
√√

ρσ
√
ρ)

If ρ = |ψ⟩ ⟨ψ| and σ = |ϕ⟩ ⟨ϕ|, and |ψ⟩ and |ϕ⟩ are two pure state,Then

F (ρ, σ) = | ⟨ϕ|ψ⟩ |

Fidelity is a number that ranges between 0 and 1 .
The fidelity of two pure states is symmetric.
The fidelity is invariant under unitary operations:

F (UρU †, UσU †) = F (ρ, σ)

Suppose that ρ =
∑

i

ri |ui⟩ ⟨ui| and σ =
∑

i

si |ui⟩ ⟨ui|, Then

F (ρ, σ) =
∑

i

√
risi

9.4 Entanglement of formation and concurrence
The concurrence is just the amount of overlap between a state |ψ⟩ and a state |ψ⟩

C(ψ) = | ⟨ψ|ψ̃⟩ |

9.5 Information content and entropy
Entropy is a way to quantify the information content in a signal.
The Shannon entropy H is given by

H2(x) = −x log(x) − (1 − x) log(1 − x)
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If we are completely uncertain then H(x) = 1
The general rule is that the larger the entropy, the more ignorance you have about the outcome.

The entropy of a quantum state with density operator is given by

S(ρ) = −Tr(ρ log2(ρ))
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Chapter 10

QUANTUM GATES

In a classical computer, at the most fundamental level there are two basic tasks that we can use when
manipulating information.
We can move it from one place to another, or we can do some type of basic processing on the information
using a logic gate.
Sets of logic gates can be connected together to construct digital circuits.

10.1 Classical Logic Gates
The basic purpose of a logic gate is to manipulate or process information at the bit level in some way.

10.1.1 NOT gate
INPUT OUTPUT

0 1
1 0

10.1.2 OR gate
A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

10.1.3 AND gate
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1
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10.1.4 XOR gate
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

10.1.5 NAND gate
A B A NAND B
0 0 1
0 1 1
1 0 1
1 1 0

This gate has the interesting property of being universal. That is, all computing operations can be
completed using only NAND gates.
In fact you can construct an entire computer using nothing but NAND gates.

10.2 Single-qubit gates
A gate can be thought of as an abstraction that represents information processing.
In a quantum computer the “gates” are unitary operations.

10.2.1 Pauli operators

• X-GATE it is a NOT-GATE :
(

0 1
1 0

)

• Y-GATE it is a bit flip:
(

0 −i
i 0

)

• Z-GATE it is a phase shift:
(

1 0
0 −1

)

10.2.2 Other operators
• H-Gate (Hadamard Gate) :

The Hadamard gates are used to create superposition states.
1√
2

(
1 1
1 −1

)H |0⟩ = |+⟩
H |1⟩ = |−⟩

, with |±⟩ = |0⟩ ± |1⟩√
2

Two Hadamard gates in serries act to reverse the operation and give back the original input.
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• P-Phase it is a phase shift :
(

1 0
0 eiθ

)P |0⟩ = |0⟩
P |1⟩ = eiθ |1⟩

10.3 The Z-Y decomposition
We can use arbitrary unitary gate with simple geometrical interpretation in the Bloch sphere

U = eiαRy(...)Rz(...)Ry(...)

Ry : rotation around the y axis. Rz : rotation around the z axis.

10.4 Two-qubit gates
We include a control bit C.
If C = 0, then the gate does nothing, but if C = 1, then the gate performs some specified action.

10.4.1 The controlled NOT or CNOT gate.
If the control qubit is |0⟩, then nothing happens to the target qubit.
If the control qubit is |1⟩, then the NOT or X matrix is applied to the target qubit.

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



10.4.2 The controlled-Hadamard or CH gate.
If the control qubit is |0⟩, then nothing happens to the target qubit.
If the control qubit is |1⟩, then we apply a Hadamard gate to the target qubit.

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X =



1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2

−1√
2



10.5 Gate decomposition
A large part of working with quantum circuits is decomposing an arbitrary controlled unitary operation U
into a series of single-qubit operations and controlled NOT gates.
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Chapter 11

QUANTUM ALGORITHMS

An algorithm is a set of instructions used to perform some well-defined task on a computer.
The nature of quantum systems—captured in superposition and interference of qubits—often allows a
quantum system to compute in a parallel way that is not possible even, in principle, with a classical
computer. However, since measurement finds a qubit in one state or the other— frustratingly we find that
if we give a quantum computer n inputs we only get n outputs.

11.1 Matrix representation of serial and parallel operations
The matrix representation of this sequence of operations is written down by multiplying the matrices in
reverse order.

ZHP (θ)

When quantum operations are performed in parallel,we compute the tensor product.

11.2 Quantum Interference
The application of a Hadamard gate to an arbitrary qubit is an example of quantum interference.
There are two types of interference, positive interference in which probability amplitudes add constructively
to increase or negative interference in which probability amplitudes add destructively to decrease.
Quantum interference allows us to gain information about a function f (x) that depends on evaluating the
function at many values of x.
Interference allows us to deduce certain global properties of the function.

11.3 Deutsch’s algorithm
consider a very simple function, one that accepts a single bit as input and produces a single bit as output.
For example we could have :

• The identity function

f(x) =
0 if x = 0

1 if x = 1
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• constant functions
f(x) = 0, f(x) = 1

• Bit flip function

f(x) =
1 if x = 0

0 if x = 1

The identity and bit flip functions are called balanced because the outputs are opposite for half the inputs.

Deutsch’s algorithm will let us put together a state that has all of the output values of the function
associated with each input value in a superposition state.
Then we will use quantum interference to find out if the given function is constant or balanced.

Deutsch’s algorithm is implemented by the following steps:

• Apply Hadamard gates to the input state |0⟩ |1⟩ to produce a product state of two superpositions.

• Apply Uf to that product state where Uf is a unitary operation that acts on two qubits.
It leaves the first qubit alone and produces the exclusive or (denoted by ⊗) of the second qubit with
the function f evaluated with the first qubit as argument.

Uf |x, y⟩ = |x, y ⊗ f(x)⟩

Uf

(
|0⟩ + |1⟩√

2

)
|0⟩ = 1√

2
(Uf |00⟩ + Uf |01⟩) = |0, 0 ⊗ f(0)⟩ + |1, 0 ⊗ f(1)⟩√

2

• Apply a Hadamard gate to the first qubit leaving the second qubit alone.
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