Project Tenji:
Python

Project Tenji ©2024 by Khalil Salahat and Mohamad El Moussawi

Hosted at tenji.org , contact : contact@tenji.org

Contents

1 Getting Started 5
1.1 Find square oot L 5
1.1.1 The problem)

1.1.2 The algorithm 5

1.2 Search for a number in a sorted list 6
1.21 The problem 6

1.2.2 Binary search algorithm oo 6

1.3 Binary representation L 6
2 Introduction to Python 7
2.1 Data Types e 7
2.1.1 int typeo 7
2.1.2 float type e 7
2.1.3 Booltype e 7
2.1.4 String type str 8
2.1.5 Casting between types 8

2.2 0perators 8
2.2.1 Arithmetic operators 8
2.2.2 Relational operators 9
2.2.3 Logical operators 9
2.2.4 String operators 9
2.2.5 Order of precedence 10

2.3 Variables and the assignment operator L. 10
2.3.1 Naming variable 10

2.4 Miscellaneous e 10
24.1 Inpub. . . . 10

2.5 0utput 10
2.5.1 Modules e e 10
2.5.2 Comments e 11

3 Selection and Repetition 12
3.1 Selection 12
3.1.1 if Structure 12
3.1.2 if-else structure 12
3.1.3 Multi-way selectiono 13

3.2 Repetition: While loops and counters 13
3.2.1 whileloop 13
3.2.2 Incrementing counterso 13
3.2.3 Forloops e 13
3.2.4 break statement 13

Contents Python

NTRe

3.3 Bisection method,Finding square-root oo 14
4 List,tuples,and strings 15
4.1 List type e 15
4.1.1 Motivationo 15
4.1.2 List type in python Lo 15

4.2 Manipulating lists L 16
4.2.1 Initializing oL 16
422 Input tolist 16
4.2.3 The input reverse problemo oo 16

4.3 Element distinctness problemo 17
4.4 List COPY -« « o v o e 17
441 Reverse List e 17

4.5 Tuples 18
4.5.1 Application 18
4.5.2 Deep CoPYo 18

4.6 SeqUeNCESo e 18
4.6.1 Iterating over sequUeENCeso 19

4.7 List comprehensiono 19
5 Functions 20
5.1 Imtroduction 20
5.1.1 Defining new functiono 20

5.2 Scope of variables and execution stack oL 20
5.3 Functions handling lists,tuples,and strings 21
5.3.1 Python garbage collector 21

5.4 Miscellaneous e 21
5.4.1 Building your own modules Lo oL 21

5.4.2 Function defined in another function L. 21
5.4.3 Default parameters 21
5.4.4 Function without a return value 0oL 22

5.5 Higher-order functionso 22
5.5.1 Functions are objects 22

5.5.2 Function taking another function as input argument 22

5.6 Some methods associated with list and str types 22
5.6.1 Methods associated with data types oL 22

5.6.2 List methods 23
5.6.3 Methods associated with the string type L. 23

6 Files and exceptions 24
6.1 Files o e 24
6.1.1 Manipulating files in python oo 24
6.1.2 Iterable versus subscriptable objects o000 25

6.2 Exceptions and assertions 25
6.2.1 Handling exceptions 25
6.2.2 Assertions 26

www.tenji.org

2 Tenjiorg

Contents
NTRe

7 Miscellaneous: plotting, randomness, and Monte Carlo simulation

7.1 Plotting
7.2 Generating random numbers
7.3 Monte Carlo Simulation
7.3.1 Approximating m
8 Program efficiency,binary Search, insertion sort
8.1 Asymptotic Analysis: Theta notation
8.1.1 Linear search
8.1.2 Asymptotic Analysis
8.1.3 Working with Theta
8.2 Other asymptotic notations L
8.2.1 Worst case running timeo
8.2.2 Common growth rates
8.3 Binary Search
83.1 Theidea
8.4 Sorting problem
8.4.1 Imsertion Sort
8.5 Time analysis of some list operations and methods
8.5.1 Some operations and methods
8.5.2 List.append
8.5.3 list.sort

9 Recursion

9.1 Introduction: recursive factorial and recursion stack
9.1.1 Recursion stack
9.1.2 [Iterative Factorial
9.1.3 Recursive versus iterative factorial

9.2 Tracking recursion, indirect recursion, infinite recursion
9.2.1 Orderof printing
9.2.2 Infinite recursion
9.2.3 Indirect recursion

9.3 Two-way recursion: Fibonacci numbers
9.3.1 Fibonacci numbers
9.3.2 Fibonacci numbers: recursive function
9.3.3 Fibonacci numbers: non-recursive:list-based
9.3.4 Fibonacci numbers: recursive: memoized L.
9.3.5 Fibonacci numbers: non-recursive O(1) space
9.3.6 Better than 6(n) arithmetic operations

9.4 Two-way recursion: tower of Hanoi
9.4.1 Tower of Hanoi problem

9.5 Recursive binary search oo
9.5.1 Recursive viewpointo
9.5.2 Implement the recursiveBinarySearch function
9.5.3 Iterative versus recursive binary search

10 Data structures digression

10.1 Lists of lists

10.1.1 Representing graphs using lists of lists

10.1.2 Initializing 2-dimensional list
www.tenji.org 3

Contents Python

NTRe

10.1.3 Printing matrices Lo 43

10.2 Applications of 2-dimensional lists 44
10.2.1 Check if given matrix is symmetrico 44
10.2.2 Maze reachability: right-down moves oo 44

10.3 Dictionaries 45
10.3.1 Dictionaries e 45
10.3.2 Dictionary operationso L0 45
10.3.3 Iterating over keys in dictionaries L. 45
10.3.4 Copy, clear, update, equality check 45

10.4 Applications of dictionaries. 46
10.4.1 Frequency of wordsinafile o 46
10.4.2 2-SUM . . . L o e 46

10.5 Stacks L e 47
11 Classes and object oriented programming 48
11.1 Intro o o e 48
11.2 User defined classes e 48
11.3 OOP machinery e 49
11.3.1 Terminologies 49
11.3.2 Other special methodso 49

11.4 OOP concepts o e 50
11.5 Inheritance e 50
11.6 Class variables e 50
12 Stack class derived from list 51
12,1 Stack . . . o o 51
122 Queueo 51
12.2.1 Non-efficient implementation oL 52
12.2.2 Wrap-aroundo 52

www.tenji.org 4 TenJ iorg

Chapter 1

Getting Started

An algorithm for a given problem is a list of instructions which given an input produces a desired output.

1.1 Find square root

1.1.1 The problem

given a nonnegative number x (the input), approximate its square root.
Interested in an approximation g of \/x such that g * ¢ is close enough to

1.1.2 The algorithm
Algorithm due to Heron of Alexandria, around 2000 years ago:

e input : x and tolerance parameter 6§ > 0
o start with a guess g > 0
e if g g is close enough to = (|g* g — z| <0) stop.

 Else update g to the value : (g + E)/2
g

o Repeat until [gx g —z| <60

e Output : g

Getting Started

Python

NTRe

1.2 Search for a number in a sorted list

1.2.1 The problem

Assume that you have a large list of n numbers sorted in non-decreasing order.
Given a number z, check if z is in the list: YES/NO answer.

1.2.2 Binary search algorithm

Taking advantage of the fact that the numbers are sorted:
o Compare z to the middle element in the list

o if equal:
Stop and output :Yes

o if x > middle:
narrow down search to upper sub-list excluding middle

o if x > middle:
narrow down search to lower sub-list excluding middle

e Repeat until :
x is found
or the sub-list is empty, in which case output:No

1.3 Binary representation

Binary digit (bit) : 0 or 1
Byte: sequence of 8 bits

In general, using n bits, get 2" combinations, thus for 8bits, we have 2® = 256 combinations.

In Base 2 representation of integers we use 0 and 1:
TpLh_1...Log = X X 10k+xk_1 X 10k_1+---—|—x0 x 10°
Example: 1100 - 1 x 23 4+1x224+0x2' +0x 2" =12

In Base 10 representation of integers we use 0,1,2,3,4,5,6,7,8,9

xkxk_l...xozxkx2k+mk_1><2k_1+---—|—x0><20

www.tenji.org 6

Tenjiorg

Chapter 2

Introduction to Python

2.1 Data Types

Python is an interpreter, it guesses the type of a variable from initialization.

2.1.1 int type

used to represent integers.

m=4

2n = 123124453654535612

. p = —234

2.1.2 float type

Used to represent real number up to limited precision.
Represented using 8 bytes (64 bits) :

o 1 bit for the sign s
» 52 bits the significant part b
o remaining 11 bits for the exponent e to put the floating decimal point

(—1)% x 1.b x 20fset=e

f =24.2345

2 k=—-56.45322342

2.1.3 Bool type

Used to represent Boolean/logical values: True and False

a = True
b = (8>3)

3 ¢ = False

Introduction to Python

2.1.4 String type str

It a sequence of characters

Use single quotations or double quotations

1's = 7ab d”
2 ¢ = ’ab d’

Escape sequences:

Escape sequences

Meaning

\n

New line

\’7

b

\7

b

\\

\

2.1.5 Casting between types

« To integer

Python

int(x) function: casts x to integer when possible.
L int (7127) #12

> int (13.7) #13
5 int (True) # 1

e to float

float() function: casts to float when possible

. float (7—14.37) # —14.3

e to string

str() function: cast to string

| str(—1432.2) # 7—1432.2”

2.2 Operators

2.2.1 Arithmetic operators

Operators for the int and float types
o Addition (+) :
« subtraction (-) :

o Multiplication (*) : = x y

 Division (/) :

o Power (**):

r+vy

r—y

(
y

x¥

All the above are binary operator: x < operator >y — 2
We have also a unary operator minus(-): —z is the negative of x
Except of division if x and y are integer then the result in an integer,in all other cases the results are a

float

www.tenji.org

Tenjiorg

w N

Introduction to Python

Operators specific to the int type
« Integer Division (//):

x//y is the quotient of x/y if y # 0, (5//2 is 2)

e Modulo (%): x%y is the remainder of x/y, (5% 2 is 1)

2.2.2 Relational operators

« Equality check (==)

o Not equal

e Less than

(=)
(<)

 Greater than (>)

o Less than or equal (<=)

 Greater than or equal (>=)

Comparing two floats

x =0.1

y = x*xx # 0.010000000000000002

xxx ==0.001# False

use instead

abs(x*x —0.01) <= 1E—6

2.2.3 Logical operators

X y x and y
True | False | False
True | True | True
False | True | False
False | False | False

2.2.4 String operators

o Concatenation

using the + operator, ("abc” +"mnr” gives "abemnr”)

o Repetition

X y X ory
True | True | True
True | False | True
False | True | True
False | False | False

using the * operator,(3*”abc” gives "abcabcabc”)

o length: a build in function len(),(len(”abc”) gives 3)

www.tenji.org

Python

X not x
True | False
False | True

Tenjiorg

Introduction to Python Python
NTRe

2.2.5 Order of precedence

if we skip parentheses in an expression, the following order of precedence will be followed:

1 | Power : **

2 | Unary operator minus: -

3 | Multiplication, division, modulo: *,/, // %
4 | Addition,Subtraction:+,-

5 | Relational: <, >, <, > ===

6 | not

7 | and

8 | or

2.3 Variables and the assignment operator

In Python, a variable is just a name associated with an object.
In python, variables can change type:

1 x =12.1 # float
2 x = "abc” string

2.3.1 Naming variable

A variable can’t start with a digit, can’t contain a spaces or symbols
It is recommended to capitalize first letter of each word except for initial word (secondNumber)
or separate by underscores (second_number)

2.4 Miscellaneous

2.4.1 Input

Use input() function which returns a string.
Then, use the functions int() or float() functions to cast if needed

1 ¢ = float (input(’Enter a float: 7))

2.5 Output

Use the function print(), which takes one or more arguments:

. print (expressionl ,expression2 ,...)

2.5.1 Modules

Here some useful scientific modules:

e math
o numpy : Numerical Python
e scipy: scientific tools for python

« matplotlib : 2D plotting library

www.tenji.org 10 Tenjiorg

Introduction to Python Python

2.5.2 Comments
Comments are ignored by python :

e Starting a line with the hash symbol # comments....

99999 99999

e Docstring comments....

www.tenji.org 11 Tenjiorg

N

Chapter 3

Selection and Repetition

Selection and repetition flow diagrams:

No s Yes

|Code] ‘Code ‘

At

1-way selection 2-way selection Repetition

3.1 Selection

3.1.1 if Structure

Enables the program to branch depending on conditions.
Syntax :

if (Boolean expression):
block of code

The block has one ore more statements.
If the Boolean expression evaluates to True, the block is executed. Otherwise it is bypassed.

3.1.2 if-else structure

if Boolean expression:
Block 1 of code

3 else:

Block 2 of code

If the Boolean expression evaluates to True, the first block is executed.
Otherwise, the second block is executed

12

Selection and Repetition

3.1.3 Multi-way selection

The two following syntax are equivalent :

The First one:

if Boolean expression 1:

Block 1 of

3 elif Boolean

Block 2 of

s elif Boolean

N

Block 3 of

else:
Block k of

code
expression 2:
code
expression 3:
code

code

Python

The Second one:

Lif

%

Boolean expression 1:

Block 1 of code

3 else:

5

if Boolean expression 2:
Block 2 of code
else
if Boolean expression 3:
Block 3 of code

else

Block k of code

3.2 Repetition: While loops and counters

3.2.1 while loop

Enables the program to repeat a task as long as a condition is satisfied.

Syntax:

while Boolean expression:
block of code

As long as the Boolean expression evaluates to True, the loop body is executed.

3.2.2 Incrementing counters

Incrementing an integer variable can be done by

i+=num # equivalent to i = i+4num

3.2.3 For loops

Used to simplify syntax of counter controlled while loop:

variable = start
while variable < stop:

code block
variable =

For-loop syntax:

for variable in range(start ,stop,step):

code block

variable + step

The default step is 1 and the default value of start is 0.

3.2.4 break statement

break statement : terminates the loop in which it is contained, and transfer control to the code immediately
following the loop.
In nested loops, a break statement in the inner loop only affects the inner loop.

www.tenji.org

13

Tenjiorg

Selection and Repetition

NTRe

Python

3.3 Bisection method,Finding square-root

Assume that z <1

We know that /z is in the interval [z, 1]

Compute mid = (x+1)/2

Compare mid*mid with x

if abs(mid*mid-x)< epsilon,stop

if mid*mid<x, narrow down search to the interval [mid,1]
Else, narrow down search to the interval [x,mid]

Repeat the above process until abs(mid*mid -x)< epsilon

www.tenji.org 14

Tenjiore

Chapter 4

List,tuples,and strings

4.1 List type

4.1.1 Motivation
Using what we know so far (scalar types, selection, and repetition), we can solve problems such as:
» given a sequence of numbers
o find sum
o average
e max
But fall short of basic problems such as: given a sequence of numbers entered by user:
e print them in reverse order
o check if they are distinct
o sort them
In all above three problems, we need to store all the sequence in memory and manipulate it,to do that we

need lists.

4.1.2 List type in python

o List is a built-in type :mutable (can be modified) ordered sequence of values, where each value is
identified by an index

« Initialization:
'L = [10,2,”7ab” ,4.4]
e indexing:
1 L[i] # is the i’th element of L
the indexing start from zero
e length function

. len (L) returns the length of L

15

2

3

4

6

List,tuples,and strings

Python

NTR

e Read and Write

1 v=L[1] # stores the value of L[1] in v
» L[1]=7 # modifies the value of L[1]

o Homogenous lists : all elements are of the same type

o Non-homogenous lists: mixed types

4.2 Manipulating lists

4.2.1 Initializing

 if n is an integer, the statement

1 L = [value]xn

creates a length-n list L whose entries are all of equal to value.

o Manipulating lists using loops
n = len (L)
> for i in range(n)

proccess LJ[1i]

1

o The range -n,...,-1 is special:
1 L[—1] #is interpreted as L[n—1]

4.2.2 Input to list
e Method 1:

1 n = int (input (”Enter number n of integers:”))
> L = [0]*1’1

s for 1 in range(n):

v L[i] = int(input(”Enter integer:”))

5 print (L)

e Method 2:

1 st = input (”"Enter integers separated by spaces:”)
> L=st . split ()

s for i in range(len(L)):

+ L[i] = int(L[i])

5 print (L)

4.2.3 The input reverse problem

st = input(”Enter integers separated by spaces: ”)
L = st.split ()
for i in range(len(L)):

L[i] = int(L[i])

sn = len (L)
for i in range(n—1,—1,—1):
print (L[i],end=" ")
www.tenji.org 16

Tenjiorg

List,tuples,and strings

4.3 Element distinctness problem

Given a sequence of integers entered by user, check whether or not they are distinct

st = input(”Enter integers separated by spaces: 7)

L = st.split ()

s for i in range(len(L)):

L{i] = int(L[i])
n = len (L)

distinct = True
for i in range(n—1):
for j in range(i+1l,n):
if L[i] =L[j]:
distinct = False
break
if not distinct:
break

s if (distinct):

print ("Elements are distinct”)

7 else:

print ("Element not distinct”)

4.4 List copy

o The assignment operator on lists produces an alias:

1 L2 = Lchanging L, changes L2

« to get clone of L, use list.copy() method:
1 L3 =L.copy

4.4.1 Reverse List

« WRONG SOLUTION:
'L =[1,2,15,20,17]

> print (L)
sn = len (L)
1 L2 =L

5 for i in range(n):
¢ L[i] = L2[n—1—1i]
7 print (L)
since L2 is just an alias of LL

e We can use :

1 L2 = L.copy () instead of L2 =L

Or :

www.tenji.org

NTRe

17

Python

Tenjiorg

List,tuples,and strings Python

'L = [1,2,15,20,17]

> print (L)

s n = len (L)

. for i in range (n//2):
#swap L[i] and L[n—1-i]

¢ temp = L[i]
+ L[i] = L[n—1-i]
s L[n—1-i] = temp

o print (L)

e Or simply :

1 L.reverse ()

4.5 Tuples

» Tuples are immutable lists: once initialized cannot be modified, i.e., read-only

o Initialization: instead of brackets [] and commas as in lists, use parenthesis () and commas

4.5.1 Application

Swaping two variables :
L (x,y) = (v,x)
Reverse problem:

. for i in range(n//2
) =(

)
> (L[i],L[n—1-i])=(L[n—1—i],L[i])

4.5.2 Deep copy

o For a tuple T without mutable objects, only need the assignment operator T2 = T since anyways we
cannot change T (there is no copy() method for type tuple).

o For a list containing mutable objects, the assignment operator L2=L creates an alias, and L2 =
L.copy() creates a clone whose mutable objects are aliases.

e Deep copy: clone all mutable objects all the way, i.e., recursively.

4.6 Sequences

Sequence is an ordered set of objects, like:
o lists
o tuples
o strings

e ranges

Strings are immutable, like tuples.
The indexing operators [i] can be used to access the i’th character of a string.

www.tenji.org 18 Tenjiorg

List,tuples,and strings Python

4.6.1 Iterating over sequences

L is a sequences

1 for x in L:
2 code block to processes x

4.7 List comprehension

A concise way of initializing lists:

» creates a list L consisting of the value of expression on x, for all elements x in the sequence.

1 L = [expression(x) for x in sequence]

o creates a list L consisting of the value of expression on x for all elements x in the sequence satisfying
the condition.

1 L = [expression(x) for x in sequence if condition]
Examples:
1L = [0 for i in range(5)] == [0,0,0,0,0]
> L = [i for i in range(5)] == [0,1,2,3,4]
s L = [i*xi for i1 in range(5)] == [0,1,4,9,16]
1
s mixed=[1,2,"a’ ,3,4.0]
¢ L = [x*%2 for x in mixed if type(x) =—int] =—=> [1,4,9]

www.tenji.org 19 Tenjiorg

1

1

1

Chapter 5

Functions

5.1 Introduction

A function has a name, input parameters (optional) , return value.
Why functions:

o Abstraction
o Code decomposition

e Code reuse

5.1.1 Defining new function

def functionName (formal parameters separated by commas):
body of function

if the function returns a value, the function body contains a return statement:
return value
and it may contain return statement to stop the execution of the function: Calling the function:

functionName (actual parameters separated by commas)

5.2 Scope of variables and execution stack

Execution stack:
o At function call, the actual parameters are assigned to the formal parameters
o The return statement stops the execution of the function and assigns the returned value
o Each function defines a new namespace, also called a scope

o Formal parameters and local variables exist only within the scope of the function’s definition
Scope of variables, Rules:

» Variables are just names which refer to actual objects

o A variable cannot be used before being defined, i.e., initialized
Python guesses the type from initialization

o Initializing a variable in a function makes it a local variable in the function’s scope

20

N

Functions Python
NTRe

5.3 Functions handling lists,tuples,and strings

Keep in mind that a variable of type list is just name which refers to an object of type list.
Passing a list to a function and returning a list from a function are done by the assignment operator:
aliases are passed and returned, which is efficient

Example:
def f(L):
if len(L) >=I:
L2 = [L[0],L[0]]
L[0] =0
L3 =L +L2
return L3
else:

return L
A= 1]1,5,6] # it will change to [0,5,6]
B=f(A) # [0,5,6,1,1]

For strings and tuples they cannot be changed when passed as input arguments to functions, unless
the tuples contain mutable objects.

5.3.1 Python garbage collector

Garbage collector: a process which eventually wakes up to clean up objects in memory that are not directly
or indirectly accessible by variables. after a function is called,it’s local variable will be cleaned since they
are not accessible in global scope.

5.4 Miscellaneous

5.4.1 Building your own modules

You can create a .py file that contain functions, and import those function by importing the .py file

import myfunctions # for importing the file myfunctions.py in the same directory

5.4.2 Function defined in another function

def f(x):

def g(y):
return y+1

z = g(x)

return zxz

Here we can’t call g from outside the function f

5.4.3 Default parameters

You can set default value for your formal parameters,the default value will be in place if the call of function
didn’t assign a value to it.

def printName (firstName , lastName, reverse = False):
if reverse:
print (lastName + ’, ’+firstName)
else:

www.tenji.org 21 Tenjiorg

Functions Python

NTRe
5 print (firstName ,LastName)
¢ printName (”Homer” ,”Simpson”)#output: Homer Simpson
7 printName ("Homer” ,”Simpson” , True)#output: Simpson ,Homer

5.4.4 Function without a return value

Assigning a function which doesn’t return value to a variable sets the variable’s type to the None type

5.5 Higher-order functions
A function is called a higher-order function if:
e it returns another function, or

« it takes another function as an input argument

5.5.1 Functions are objects

In python functions are objects, namely they maybe be:
e passed to other functions
o returned by other functions

 assigned to variables

5.5.2 Function taking another function as input argument

. def linear (x):

2 return x

s def square(x):

! return x*x

5 def findsum(n,p):

6 x=0
7 for 1 in range(1l,n+1):
8 x = x+p(i)

9 return x
o print (findSum (10, linear)) # output 55
i1 print (findSum (10,square))# output 385

5.6 Some methods associated with list and str types

5.6.1 Methods associated with data types

Types in python have methods associated with them.
T is a type and x is an object of type T.
we call those function by the member access operator ” .

b

o list.copy
o list.reverse

o x.f(input parameters) , f is a member function of the type T

www.tenji.org 22 Tenjiorg

Functions

Python

5.6.2 List methods

1

2

list.append(e):
add object "e” to the end of the list it’s the same as list = list + [e]
it has no return value .

Side effect:

in the following example we get an infinite loop.

L = [1,20,3]

for e in L :
L.append (e)

print (L)

L.append has an advantage over L = L+[e|, which always creates a new list

List.extend(L): adds the items in L to the end of List
Has the same effect on L as L = L+L2

it has no return value.

Same side effect as L.append

L.count(e) returns the number of times that e occurs in L.
L.insert(i,e) inserts the object e into L at index i.
L.remove(e) deletes the first occurrence of e from L.
L.index(e) returns the index of the first occurrence of e in L.
L.pop(i) removes and returns the item at index i in L.

L.sort() sorts the elements of L in ascending order

5.6.3 Methods associated with the string type

str.split : return the list of words for str
st.split(sep) will return the list of substring separated by sep

List.join: return a string consisting of the strings in List
sep.join(L) will joint the elements of the list separated by sep

www.tenji.org 23

Tenjiorg

Chapter 6

Files and exceptions

6.1 Files

Unlike lists , files are stored on drives.

6.1.1 Manipulating files in python

General structure

. nameHandle = open (fileName ,mode)
> nameHandle. close ()#close the file

o fileName: string containing the path of the file

r: reading
e mode:{ w: writing

a: appending

Reading a file

e In one shot

 nameHandle = open(fileName, 'r’)
s = nameHandle.read () # read the whole file into single string s
s nameHandle. close ()

V)

e line by line

1 nameHandle=open (fileName , 'r ")
for line in nameHandle:

V)

» nameHandle. close ()

24

V)

Files and exceptions Python

Writing to a file

nameHandle = open (fileName , 'w’)
nameHandle. write (s)#now the file consists of the string s

3 #we can use the write method as many times as needed to append additional strings

nameHandle. close ()

Note that if we open an existing file in the 'w’ mode, its content will be disregarded,
if we want to write instead of overwriting we must use the mode ’a’ instead of "w’.
Note that if the file doesn’t exist it will be created.

6.1.2 Iterable versus subscriptable objects

If we can iterate over object (for something in object ...) then the object is iterable.
when we can use an indexing operator with the object (object[i]) then the object is subscriptable.
The file object is iterable and not subscriptable.

6.2 Exceptions and assertions

Exception are something that does not conform to the norm.
we can handle exceptions.
Common exceptions:

« TypeError (e/”abc”)

 IndexError (L=["a,”,”b,”] and try to accessL[2])
 ValueError (int(”abc”))

« ZeroDevisionError

¢ FileNotFoundError

6.2.1 Handling exceptions
Try-except statement

Instead of program crashing, Code Block B will execute if an exception is raised in Code Block A. For any
error:
try:

Code Block A

3 except:

Code Block B
Or :

try:
Code Block A

3 except Error_1:

Code Block B_1

5 except Error_k:#will execute only if Error_k was raised in Block A

Code Block B_k

www.tenji.org 25 Tenjiorg

Files and exceptions Python
NTR

7 except: #will execute if an exception other than all the above was raised in Block

A
8 Code Block B

6.2.2 Assertions

The assert statement raises an AssertionError if the boolean expression was False.

1 assert Boolean expression ,”error message”

www.tenji.org 26 TenJ iorg

Chapter 7

Miscellaneous: plotting, randomness, and
Monte Carlo simulation

7.1 Plotting

o Importing the plotting module :
import matplotlib.pyplot as plt

o Let X and Y be lists of numbers of the same length, representing x and y coordinates.
To plot Y as a function of X ,use

. plt.plot (X,Y, color)
color is a string taking values such as "k” for black, "r” for red, ”b” for blue ...
The plot function plots the points (X[i],Y[i]), for i = 0 ,...,Jen(X)-1
connected by lines of colors color.
e to include labels :

plt.xlabel (”x label text”)
> plt.ylabel(”y label text”)

e to include a title, use

plt.title (7 title text”)

o to show the figure
plt .show ()

e to clear a figure
plt.clf()

e to plot on a new or existing figure whose index is i, use

plt.figure (i)
> plt.close (i)#to close figure i

e To plot on the same figure multiple graphs with tiled axes, use

plt.subplot (m,n,i)

27

Miscellaneous: plotting, randomness, and Monte Ca%}o simulation Python
NG

— m: number of rows
— n: number of columns

— i: graph index

o When plotting multiple functions on the same figure, it helps to include a legend to label the functions
you can add a label

1 plt.plot (X,Y,label="myLabel”)

it appears when you invoke :
+ plt.legend ()

o If the y-values contain very large and very small numbers, use log scale on the y-axis:

1 plt.yscale(’log’)

7.2 Generating random numbers

e Import the numerical python module numpy

1 import numpy.random as rand

» To generages a uniformly random number in the real interval [x,y]

i rand . uniform (x,y)#float
> rand . randint (x,y)#int

7.3 Monte Carlo Simulation

Monte Carlo simulation is a technique used to approximate the probability of an event by random sampling
multiple times, and averaging the results.

7.3.1 Approximating 7

o Area of unit circle : ¥ x 1> =7

o Area of unit square : 2 x2 =4 1

area of unit circle T

area of unit sqaure 4

o Thus the probability p that a random point of the unit square belongs 1
to the unit circle is il

Which mean :

Now to approximate 7:

« Choose n point (x,y) where x and y between -1 and 1

e Find the number m of points in the unit circle
m

e Return —
n

o For large n, get an approximation of 7

www.tenji.org 28 TenJ iorg

Chapter 8

Program efficiency,binary Search, insertion
sort

8.1 Asymptotic Analysis: Theta notation

8.1.1 Linear search

Counsider the linear search

cl def linearSearch (L,e):

> c2 n = len(L)
3 ¢c3 i=0

c4 while i<n:
5 €H if L[i] =e:
; cb return i
7 c7 i =i+l
s €8 return —1

Let T'(n) is the wors case running time of linearSearch on a size-n list
The worst case if e not in L
Thus :
T(n)=ci+co+ (cqs + 5+ c7) X n+ ¢4 + cg = (constant) X n + (negligable term compared to n)

8.1.2 Asymptotic Analysis

Its a solution to measure the running of algorithm.
we look at the growth of T'(n) as the input size n — oo
The keys are:

e ignore constants

» ignore low order terms

Theta notation

Here it comme the Theta notation as following:
e bn+17 = 0(n)
e 6n*+18n+5 = 0(n?

e 3log(n)+7 = 6(log(n))

29

1

2

1

Program efficiency,binary Search, insertion sort Python

e 10 = 01
Definition:
Let f(n) and g(n) be function defined on the nonnegative integers.
We say that f(n) =0(g(n)) if: lim fEn; = a| a strictly positive constant.
n—oo g(n

More generally even if the limit doesn’t exist, we say that f(n) = 6(g(n)) if f(n) can be sandwiched
between two positive constant multiples of g(n).

0 < xg(n) < fln) <cpxgn)

8.1.3 Working with Theta

Useful properties
* f(n)=0(g(n)) and g(n) = 0(h(n)) = f(n)=0(h(n))
* 0(g(n)) +0(g'(n)) = 0(g(n) + ¢'(n))
« 8(g(n)) x 0(g'(n)) = 0(g(n) x g'(n))

Linear search running time

Back to the linear search running time we can use theta notation as following: 7'(n) = 6(n) steps
For the best case running time : 6(1) (if L[0] ==e)

In case of searching for two elements (two sequential loops), the theta notation as following:

O(n) +60(n) =60(n)

Nesting loops costs more

Naive distinct element algorithm

def naiveDistinctElements (L) :
n = len(L)
for i in range(n):
for j in range(n):
if il=j and L[i] =L]J[j]:
return False
return True

Theta notation : 6(1) +n x (6(n)) = 6(n?) steps

Better Distinct Elements algorithm

def distinctElements(L):
n = len (L)
for i in range(n):
for j in range(i+1l,n):
if L{i] =L[j]:
return False
return True

Number of tests is reduced by half, but it is still quadratic

www.tenji.org 30 Tenjiorg

1

1

Program efficiency,binary Search, insertion sort

Square tests

By a naive square test : 6(y/n) arithmetic operations

By bisection:

def isSquareBisection (n):
if n<0: return False
elif n==0:return True
else:

low =1
high =n
while low <=high:

mid = (low+high)//2
if mid*mid =—mn :
return True
elif midsmid<n:
low = mid +1

else:
high = mid—1

return False

it take 0(log(n)) arithmetic operations.

because after each iteration, the lenght of the search interval is reduced by at least half

Imporatant Note

0(n) arithmetic operations # #(n) steps since:

for large n, multiplication operation in factorial algorithm costs is more than (1) step.

8.2 Other asymptotic notations

o Theta : f(n)=0(g(n))
f(n) is asymptotically like g(n)

e Big O: f(n) =0(g(n))

f(n) is asymptotically like g(n) or weaker than g(n)
There exist ¢ > 0 and ny > 0 such that for all n > ny,0 < f(n) < ¢ x g(n)

« Little o: f(n) =o0(g(n))
f(n) is asymptotically weaker than g(n)

limM:O

n=oe g(n)

f(n) = 0O(g(n)) and g(n) = O(f(n)) «— f(n) = 0(g(n))

8.2.1 Worst case running time

e T(n) =0(g(n)) mean that:
The worst case running time grows like g(n).

e T(n) = O(g(n)) mean that:

The worst case running time grows like g(n) or is weaker than g(n).

e T(n) =o0(g(n)) mean that:

The algorithm is asymptotically much faster than g(n)

www.tenji.org

31

Python

Tenjiorg

Program efficiency,binary Search, insertion sort Python

NTR

8.2.2 Common growth rates

6(1) called constant running time.
O(log(n)) called logarithmic running time.

0(n) called linear running time.

0(n?) is called quadratic running time.

(
(
(
0(nlog(n)) is called log-linear running time.
(
Q(nk) k > 0 constant, is called polynomial running time.
(

0(c"),c > 1 constant, is called exponential running time.

1030 + log_2(n)
— n
1026 41 —— n*log_2(n)
—_— n"2
1022 4 2”n
1018 J
104 4
1010 i
106 i
102 //—:—____:'——_—-

0 20 40 60 80 100

8.3 Binary Search

Well linear search takes linear time, we expect algorithm faster than linear search.

8.3.1 The idea

In a sorted list (in non-decreasing order), we want to find if x is in L and return its index if it exist.

Same as the bisection method

Compare x with the middle element of L.

if >, ignore the lower half of L including middle element of L since L is sorted.
if <,ignore the upper half of L. including middle element since L is sorted.

if =, we are done (x is an element of L).

Repeat.

www.tenji.org 32 TenJ iorg

1

Program efficiency,binary Search, insertion sort Python

NTRe

def binarySearch (L,x):

n = len (L)
low =0
high = n—1

while low <=high:
mid = (low+high)//2
if L{mid] = x:
return mid
elif L[mid]<x:

low = mid+1
else:
high = mid—1

return —1

The worst case running of binary search on a list of size n is §(log(n)) steps, less than 6(n).

8.4 Sorting problem

The selection sort algorithm take f(n?) time.
Now the insertion Sort, which also takes 6(n*)time.

8.4.1 Insertion Sort
Idea:

o First element ok.
o Compare the second element with the first and insert in the correct place.

o Compare the third element with the second,and if needed with the first to insert it in the correct
place.

e And so till the end

0 4
1

0 1 2 3 4 5 1 2 3 5 0 1 2 3 4 5
2/ 2/ /

1 2 3 4 5

0 1 2 3 4 5 0 5 0 1 2 3 4 5
© REGERE] © DEEEEE o D2BEE5]6)

The code:

def insertionSort (L):
n = len (L)
for j in range(l,n):
key = L[j]
i=j -1
while i >=0 and L[i] > key:
L{i+1] = L[i]
i=1i -1
L{i+1] = key

www.tenji.org 33 Tenjiorg

Program efficiency,binary Search, insertion sort Python

Comparision slection versus insertion sort

Selection Sort | Insertion Sort
Worst case running time 0(n?) 0(n?)
Best case running time 0(n?) 6(n)
Number of write operations on list | #(n) 0(n*) Worst case

8.5 Time analysis of some list operations and methods

8.5.1 Some operations and methods

Equality Check: L1==L2 | §(len(L1) + len(L2))
Concatenation: L = L14+L2 | §(len(L) + len(L2))
Membership: e in L O(len(L))

Slicing: Lli:j] 0(j —1)

L.count(e) O(len(L))

L.index(e) O(len(L))

L.reverse() O(len(L))

8.5.2 List.append

In the worst case L.append(e) operations takes 0(len(L)) time:

if not enough contiguous cells are available, the whole list is copied to new place in memory and resized.
The point is that when copied to a new place in memory, the list is resized to twice its size to allow for
efficient append in the next iterations.

That mean copy will only happen when the list length is a power of 2:1,2.4,8,16...

Thus total cost is: |0(n) |.

While L = L+[e] method cost:f(n*) be cause for each iteration the cost of L = L + [e] is 6(i) by creating
new list.

8.5.3 list.sort

list.sort takes @(nlog(n)) time to sort a size-n list, much faster than selection sort and insertion sort,which
take 6(n?).

www.tenji.org 34 TenJ iorg

Chapter 9

Recursion

9.1 Introduction: recursive factorial and recursion stack

A recursive definition defines a structure in terms of a smaller version of itself.
To stop the recursion, every recursive definition must have at least one base case.
The general case must eventually reduce the definition into the base case.

0! =1:n =0 is the base case

example: Factorial:recursive definition)
n!l = (n—1)! x nif n > 1: the general case

Code: .
. def recursiveFactorial (n):
2 if n =— 0: return 1 |1
else: 2|1
1 y = recursiveFactorial (n—1) 1 return
: return nxy 3 T4
¢ print (recursiveFactorial (3)) order of traversal

9.1.1 Recursion stack

The recursion stack is the execution stack when recursion is involved
Each recursive call to a recursive function has its own:

e parameters

 local variables

e return value

« control (knows where to return when done)

Remember that :
when a function call completes control returns to the calling function.
execution in the calling function resumes from the point immediately following the call.

35

N

Recursion Python

9.1.2 Iterative Factorial

def iterativeFactorial (n):
x =1
for i in range(l,n+1):
X = x*1
return x

; print (7iterativeFactorial (5):”,iterativeFactorial (5))

9.1.3 Recursive versus iterative factorial

Recursive: Iterative:
Time : §(n) arithmetic operations Time : §(n) arithmetic operations
Space : O(N) integers Space : (1) integers

iterative implementation is better.

9.2 Tracking recursion, indirect recursion, infinite recursion

9.2.1 Order of printing

Order 1 : Order 2 : _
T T print
def f(n): 1 def g(n):
print (n,end="") . > if n >=I:
if n >=1: I 3 f(n—1) T print
f(n—1) f , print(n,end="")
L £(10) . g(10) I print

print

9.2.2 Infinite recursion

Infinite recursion: every function call results in a recursive function call.

in theory it executes forever but the computer executes until it runs out of memory.

if not intended, it is usually the result of missing base case, or the problem does not reduce to the base
case.

9.2.3 Indirect recursion

e Direct recursion: a function calls itself

o Indirect recursion: a function f calls other functions that eventually end up calling f

www.tenji.org 36 Tenjiorg

9

Recursion

Python

NTRe
9.3 Two-way recursion: Fibonacci numbers

Two-way recursion: recursive function which calls itself twice, the key concept is recursion tree.

9.3.1 Fibonacci numbers

o Base case:
- FO — O
— k=1

e General case:
F,=F, 1+ F,» 1fn2 2

e

First few: 0,1, 1, 2, 3,5, 8,13, 21, 34, 55, 89, 144, 233, ...
A

9.3.2 Fibonacci numbers: recursive function

def recFib(n): global rEturnTls
assert type(n) = int and n >=0, "bad input!”
the two base cases

1
17
if n ==0 or n==1: return n 2 /1'1 \
12

else: 16
prevl = recFib(n—1) 10
prev2 = recFib (n—2) 3 /8\9 /‘14
return prevl + prev2 # combine the 7 13 15
results 4 /'5\

print (recFib (5))

Step: 112131456789]10|11 12|13 |14 |15]16 |17 |18

Stack content: 4141414441444 |4 |4 |4 (4 |4 |4 |4 |4

Stack content: 3131313313333 2 12 (2 |2 |2

Stack content: 21212122 1 1 0

Stack content: 1 0

Recursion tree captures the recursion process of multi-way recursion.
« FEach node corresponds to a recursive call.

e Root: initial call

o Leaves: base cases

e Down arrows: recursive call

o Up arrow: return

www.tenji.org 37

Tenjiorg

N

Recursion Python

NTRe
global return 1
Recursive function not efficient: /
o It solves the same subproblem multiple times \ 7 AN
o For instance, F3 is computed twice and F3 three times /\ / \ RN

Z

recursive Fibonacci time = 2° arithmetic operations
recursive Fibonacci space = 6(n)

9.3.3 Fibonacci numbers: non-recursive:list-based

def fibListBased (n):

assert type(n) = int and n>=0,"Bad input!”
L = [0]x(n+1)
if n ==0 or n==1: return n
else:
L[0] =0
L[1] =1

for i in range(2,n+1):
L[i] = L[i-1]+L[i-2]
return L{n]

Time 6(n), spacef(n)

9.3.4 Fibonacci numbers: recursive: memoized
Memoization: to avoid resolving previously solved problems, help recursion with look-up list L[0...n]
« Initially all entries in list are -1
o Before resolving check list
o if -1, solve and save in list
o Else, return value in list

Memoization is an overkill for Fibonacci, but very useful for other problems
1 def FibMemoized (n):
> assert type(n) =—int and n>=0,”"Bad T
input!”

3 def recFibMemoized (n,L):
1 if L[n] = —1: /

return L[n]

6 elif n==0 or n==1: ot from L .
i L[n] =n /' \ (8) Time

8 else:
9 L[n] = recFibMemoized (n—1,L)+ /\
recFibMemoized (n—2,L)

10 return L[n] /v\

11 L = [—1]*(n+1)
12 return recFibMemoized (n,L)

(got from L)

www.tenji.org 38 Tenjiorg

Recursion Python
NTRe

6(n) arithmetic operations , Space: 6(n) integers

9.3.5 Fibonacci numbers: non-recursive O(1) space
Key: enough to keep track of the last two Fibonacci numbers

1 def fib(n):
2 assert type(n) =—int and n>=0,"Bad input!”
if n==0 or n==1: return n

previous2 = 0
previousl =1
6 for i in range(2,n+1):
7 current = previousl+4previous?2
8 previous2 = previousl
9 previous = current

10 return current

Time 6(n), spaced(1)

9.3.6 Better than 6(n) arithmetic operations

1 1\" (F.. F,
10 - Fn Fn—l

9.4 Two-way recursion: tower of Hanoi

key: matrix identity: for n > 1

9.4.1 Tower of Hanoi problem

o Given 3 needles and n disks of increasing size.

o The n disks are originally stacked on needle 1 in increasing
size with largest at the bottom.

o Target is to move the disks to needle 3 and place in the
same same order.

o Constraints:

— Move one disk at a time from one needle to another

— A disk can not be placed on top of a smaller disk.

www.tenji.org 39 Tenjiorg

Recursion Python

NTR
Solution
For n =3
) é& 1 V‘i_'x It
To move n disks from needle 1 to needle 3: ‘
2
e 1. if n > 2, move top n — 1 disks recursively from needle
1 to needle 2, using needle 3 as an intermediate needle.
 — D 3 i
o 2.Move disk from needle 1 to needle 3 A

e 3. if n > 2.move top n — 1 disks recursively from needle
2 to needle 3, using needle 1 (which is now empty) as an T > o O &
intermediate needle.

Base case : n =1 do second step only.

Code:
. def moveDisks(n,start=1,destination=3,
intermediate=2): T
2 if n>=2:
3 moveDisks (n—1,start ,intermediate ,
destination) %mm
print ("Move disk” ,n,”from” ,start ,” to 7,

destination) rintmoveg\
if n >=2: Movez i /

6 moveDisks (n—1,intermediate , destination ,
Start) print move 1 print move3 print move 5 print move 7

- moveDisks (3)
Time : 6(2"),sapce 0(n)

9.5 Recursive binary search

9.5.1 Recursive viewpoint

To find the index of x in a sorted list L:
o Compare middle element of L with x
o If = return index of middle element
o If <, recur on the upper half of L
o If >, recur on the lower half of L
o If recursive call is on empty list, return -1

Base case: two base cases 2 and 5

www.tenji.org 40 TenJ iorg

Recursion

Python

NTRe

9.5.2 Implement the recursiveBinarySearch function

Don’t pass lower half or upper half as slices to the function as slicing makes copies and the this takes linear

time

Instead, pass the indices low and high in addition to L (just an alias) and x, which takes constant time:

def search(L,x):
def recBinarySearch (L,x,low, high):
if low>high:return —1
mid = (low+high)//2
if L[{mid] =x:
return mid
elif L[mid]<x:
return recBinarySearch (L,x,mid+1,high)
else:
return recBinarySearch (L,x,low ,mid—1)
return recBinarySearch(L,x,0,len(L)—1)

9.5.3 Iterative versus recursive binary search

Iterative binary search : Recursive binary search
Time 6(log(n)) steps Time 6(log(n)) steps
Space 0(1) Space 6(log(n))

iterative best.

www.tenji.org 41

Tenjiore

Chapter 10

Data structures digression

Data structures are used to store and manage data.
Dynamic sets are data structures that support certain operations, also called queries, such as search, insert,
and delete.

10.1 Lists of lists

A list L of lists is a list whose entries are objects of type list.

10.1.1 Representing graphs using lists of lists

Adjacency list representation of graph:

Adjli] is a list containing the nodes adjacent to node i: o,o °

CAdj = [[1,2],(2,3],[1,3,4],[1,4]] ,[4]] o e ‘\@

Tables , Matrices:

In general, we can model an m X n table/matrix using a length-m list
L,where L[i] is a length-n list, for i=0,...,m-1

< —

0 1 2
o m = number of rows = len(L) 1, [10 ,2,3]
e n = number of columns = row length =len(L[0]) 1T [1 5.7]
o Thus L[i][j] correspond to cell (i,j) in table ::: E-ﬁl ’ g']i26]]

42

Data structures digression

Python

NTRe
10.1.2 Initializing 2-dimensional list

Given m and n and a scalar val.

an m X n 2-dimensional list L. whose entries are all equal to val can be created:

« using * operator:

> for i in range (m):
L[i] = [val]xn

« Compact method using list comprehension

1 L = [[val for j in range(n)] for i in range(m)]

10.1.3 Printing matrices

Printing matrices:

1 import numpy

.M = [[10,2,3],[1,—500,7],[1,5,12],[6.6,16]]
5 print (M)

. print (numpy . matrix (M))

¢ OUTPUT:
- [[10,2,3],[1,-500,7],[1,5,12],[6,6,16]]
s [[10 2 3]
o [1 =500 7]
o[l 5 12]
6 6 16]]

11
Printing a boolean matrices

' M = [[True, False , False],

> [False ,True, True] ,

s [True, False , True] ,]

. print (numpy. matrix (M))

5 print (numpy. matrix (M, int))

6

7 OUTPUT":

¢ [[True False False]
o [False True True]
v [True False True]]

www.tenji.org 43

Tenjiorg

Data structures digression

Python

10.2 Applications of 2-dimensional lists

NGO

10.2.1 Check if given matrix is symmetric

A matrix M is called symmetric if:

e 1. number n of columns = number m of rows

« 2. M[i][j] = M[j][i]

def checkIfSymmetric (M) :
m = len (M)
n = len(M[O0])
if ml=n: return False
for i in range(n):
for j in range(i+1,n):
i M[][5] '=M[5][i]
return False

I S

w N o W

9 return True

10.2.2 Maze reachability: right-down moves

m X n table with True and False entries:

e True indicates an open square

o False indicates a blocked square

Once in an open square, you can possibly move to two squares:

the square on the right if it is open and the square below if open.

1 def mazeReachableCells (M) :

> m = len (M)

5 n = len(M[0])

+ R = [[False for j in range(n)]
> R[0][0] =M[0][0]

¢ for i in range(m):

7 for j in range(n):

8 if R[i][j]:

9 if i<m—1 and M[i+1][]]:
10 R[i-i—l][j] = True

11 if j<n—1 and M[i][]j+1]:
12 R[i][j+1] = True

13 return R

www.tenji.org

for i in range(m)]

44

Tenjiorg

Data structures digression Python

10.3 Dictionaries

10.3.1 Dictionaries

Dictionary (dict) is a built in type in python.
While lists are indexed by integers, dictionaries are indexed by keys.
Syntax to definite a new dictionary :

' D = \{ key:value,anotherKey:anotherValue ,... \}

Use subscript operator to access value given key: Dlkey| Entries in a dictionary are unordered

10.3.2 Dictionary operations
As a data structure, a dictionary supports the four operations/queries:

o Search for key: key in D: return True or False

o Access value given key (read/write): Dlkey| In read mode, gives an error “KeyError: key” if key is
not in D

 Delete entry given key: del D[key| Gives an error “KeyError: key” if key is not in D

e Add new entry (newKey/val pair): DlnewKey] = val It overwrites old value if newKey exists in
dictionary

Dictionaries are mutable.
Their values can be mutable objects,but not their keys: keys must be immutable.
All 4 dict operations add, access, search, and delete take O(1) time on the average

10.3.3 Iterating over keys in dictionaries

1 for key in D:
> #proccess D[key]

10.3.4 Copy, clear, update, equality check
« Copy

— Assignment operator: D2 = D creates an alias D2 of D
— Copy method dict.copy: D2 = D.copy() : depth-1 only
— Deep copy: copy.deepcopy(D) returns a deep copy (need to import copy)

o Clear:
To clear all the entries of a dictionary: D.clear()

— Not the same as D =

— If D has an alias, D.clear() also clears the alias but D = doesn’t

o Add:
To add dictionary D2 to dictionary D: D.update(D2)

o equality check:
To check if two dictionaries D1 and D2 are equal D1 ==D2

www.tenji.org 45 TenJ iorg

N

1

N

Data structures digression

NTR

10.4 Applications of dictionaries

Using Adj to represent graph:
e key = node label
o value = list of adjacent nodes
Adjs] is a list containing the nodes adjacent to node s:

Adj = AA[Xab], X [ab’ uv’]ab [X uv] v X

10.4.1 Frequency of words in a file

def freqOfWordsInFile (fileName) :
nameHandle = open (fileName, 'r’)

s = nameHandle.read () # read file into a string s

nameHandle. close ()
L = s.split() # store words in list L

D= {} # initialize empty dictionary D :
for w in L: # loop over strings in list L

if w mnot in D: # search for w in D

D[w] = 1 # if not found: add w as a new word with frequency

else:

D[w] 4+=1 # increment frequency of w if found

return D

D = freqOfWordsInFile(”findFreqlInFile.py”)

s for w in D:

print ("Word:” ,w,” Frequency:” ,D[w])

10.4.2 2-SUM

def twoSumUsingDictionary(L,t): # O(n) expected time

D= {}
for i in range(len(L)):
if L[i] not in D:
D[L[i]] =i
for x in L:
if t—x in D:
return (D[x],D[t—x])
return (—1,—1)

www.tenji.org 4:6

Python

values= frequencies

Tenjiorg

Data structures digression Python

10.5 Stacks

We have already seen an example of a stack: the recursion stack In general, a stack S is a data structure,
which as a dynamic set supports operations:

o Push object x to stack S
» Pop object from stack S and return it: removed object is the last
o is stack empty

We can use a list S as a stack :

e Push:
1 S.append (x)

e Pop:
1 S.pop ()

o Is stack empty
1 len(S) = 0

www.tenji.org 47 Tenjiorg

Chapter 11

Classes and object oriented programming

11.1 Intro

Objects are collections of data and the methods.
Every object has a type, of which the object is an instance.

Abstract data type (ADT) is a type of objects with data and associated methods also called operations.

11.2 User defined classes

Syntax to define a class: class keyword:

1 class className:
> def methodl (..):

i+ def method2(..):

d to defi lass Clas means subclass of class object: ignore for now
Keyword to de 'Tass asiname‘/ Keyword and formal parameter, which represents
- - . the instance of the class Docstring: describes
class| IntSet(object): ~

Name of initializ_er e e —m Specifications, not
method—aspeaal n 1nts>et 1s afjset OoT 1ntegers | '\mplementaﬂon

method attribute/ Try hel
— — . y help(IntSet)
member function def ‘—.mlt—()' wrm help(IntSet._ Init_)
["™ Creates an empty set of Integers"™" P e

invoked when new Member

. : selfgvals = []
‘_———___ - "
Instance of class is access operator/f Data attribute/member variable
created, e.g., def insert((self, e):
S = IntSet() """ Assumes e is an integer and inserts e into self"""
if e not in self.vals:
Name of Method self.vals.append(e)
attribute /member def member(self, e):
function, e.g., called as: """ Assumes e is an integer
) Returns True if e is in self, and False otherwise"™""
S.insert(3)) return e in self.vals
same as IntSet.insert(S,3)
S.insert(5)

print(S.member(3))

48

Classes and object oriented programming

11.3 OOP machinery

11.3.1 Terminologies

Python

« Dot operator: used to reference attributes

 Attributes/member:

— data attribute
— method attribute

o self keyword: if f is a method attribute of a class and S is an instance of the class,calling S.f results

in assigning S to self.

 Special methods: (start and end with double underscore):

— _init__(self,argl,arg2,...):

intializer method, invoked when a new instance of the class is created

— _str__(self):

string representation method invoked by print and str functions

11.3.2

Other special methods

Special method Operator Default
className.__add__ (self, other) self+other NA
className.__sub__(self, other) self-other NA
className. _mul__(self, other) self*other NA
className.__truediv__(self, other) | self/other NA
className.__It__ (self, other) self<other NA
className.__le__ (self, other) self<=other NA
className.__gt__(self, other) self>other NA
className.__ge__(self, other) self>=other NA
className.__pow__ (self, other) self**other NA
className.__neg__(self) -self NA
className.__eq__ (self, other) self==other id(self) == id(other)

applicable (e.g., we
could have added this
special method to
IntSet)

Special method Meaning Indirectly invoked via | Default
className.__float__(self) |Castinto a float float(self) NA
className.__len__ (self) Returns length if len(self) NA

www.tenji.org

49

Tenjiorg

Classes and object oriented programming Python
NTRe

11.4 OOP concepts

o — Getters: methods which do not modify data attributes.
— Setters: methods which modify data attributes.

« Encapsulation: It means bundling together data attributes and associated methods attributes

o Information hiding:
Information hiding allows a programmer to change the implementation of the class (e.g., to improve
efficiency) without breaking the code that uses the class based on specifications.

11.5 Inheritance

Inheritance enables a programmer to define a class in terms of another class.
Instead of defining a new class from scratch, a class could be defined as subclass by inheriting certain

attributes from a base class.
Inheritance gives a hierarchy of types.

Syntax to define classB as subclass of classA,i.e.,derive classB from classA:

1 class classB(classA):
2 def

The subclass Inherits all attributes (data and methods) of base class.
We can override, i.e., replace, method attributes of the base class in the subclass.
We can include new attributes in the subclass.

11.6 Class variables

Syntax to define a class variable var :

1 class className:
2 var = initial wvalue
def method

to access var: use className.var

www.tenji.org 50 Tenjiorg

1

2

Chapter 12

Stack class derived from list

12.1 Stack

A stack S is a data structure, which as a dynamic set supports operations:
e Push
e Pop

o is empty?

class Stack(list):

777 class Stack derived from list”””

def push(self ,value):
self .append(value)

def top(self):
assert not self.isEmpty (), ”Stack Empty!”
return self [len(self)—1]

def isEmpty(self):
return (len(self)==0)

Pop and Push operations take O(1) amortized time

12.2 Queue

Queues are like stacks except that the removed object is the first in instead of last in
A queue Q is a data structure, which as a dynamic set supports operations:

o Enqueue
e Dequeue

e is queue empty

51

Stack class derived from list
NTRe

12.2.1 Non-efficient implementation

Similarly to a stack, could implement it using a list Q:
o Enqueue: Q.append(x)
« Dequeue: Q.pop(0)
e is empty : len(Q) ==

The issue is Q.pop(0) takes O(len(Q)) time

12.2.2 Wrap-around
e Use Data attributes:

Python

— max>Size hef‘d tf“
— List L of length maxSize List L‘ | | | 3 | 10 | 12 | 5 | 13 | | |
— size: number of elements in queue
— tail: index in L head taJI
— head: index in L tste| | | [3 |10 [12]5 [13]2 | |
e __init__ method:
— takes maxSize as input argument and ini- tail head
tializes L ¥ ¥
tistt| | | |3 |10 |12]5 |13]2 |4]
e enqueue method:
— check if full tail he*ad
— insert element at the tail ListL|7| | |3 ‘10 |12‘5 |13|2 I4|
— increment tail in a circular fashion
— increment size
tail head
o dequeue method: + ¥
st [7] | [3, |10 [12]5 |13]2 [4]
— check if empty
— read value at head 3 is still in the list and it will
— increment head in a circular fashion :ﬁqugﬁzbly overwritten by
— return value
o Other methods :
tail head
— peakHead(return value at head) L ¥
st [7] | [3 |10 [12]5 |13]2 [4]

— isFull,isEmpty

— _str__,_len__(return size)

www.tenji.org 52

Tenjiorg

Stack class derived from list

1 class Queue(object):

2

29999

def

def

def

def

def

def

def

def

www.tenji.org

Queue with given max size 777

__init__(self, maxSize=10):

29999

self .L = [None|*maxSize
self .size = 0
self . maxSize = maxSize

self.tail = 0
self .head = 0
enqueue (self ;value):

29999

self .L[self.tail]=value

if self.tail<self.maxSize—1:
self . tail+=1

else:
self.tail = 0

self.size+=1

dequeue (self):

777 removes and returns first wvalue

Python

takes maxSize whose default value

adds value to queue, raises exception
assert not self.isFull(), "Queue Full”

is 10

raises

assert not self.isEmpty (), "Queue Empty”

val = self .L[self.head]

if self.head<self.maxSize—1:
self . head+=1

else:
self . head=0

self .size—=1

return val

peakHead (self):

99999

returns value at head, raises exception

assert not self.isEmpty(), "Queue Empty”

return self .L[self.head]
isFull (self):

777 returns True if full”””
return self.size=—self.maxSize
isEmpty (self):

777 returns True if empty”””
return self.size==
__str__(self):

"??represent elements in queue as a string:

separated by commas and between brackets”””

s ="[”7
index = self.head
for count in range(self.size):
s = s+ str(self.L[index])+",”
if index<self.maxSize—1:
index+=1
else:
index=0
return s[:—1]4+"]"
—1 to remove the trailing comma

__len__(self):

return self.size

53

2

299

if full

exception

if empty”””

eIIlpty 799

Tenjiorg

Stack class derived from list Python
NTRe

Drawbacks and improvement

e One drawback: need to set maxSize at initialization and live with it.
Solution:

— Double list size if maxSize reached

e Another drawback which has a similar solution is that too much space remains reserved if queue
grows a lot and then shrinks a lot.

www.tenji.org 54 TenJ iorg

	Getting Started
	Find square root
	The problem
	The algorithm

	Search for a number in a sorted list
	The problem
	Binary search algorithm

	Binary representation

	Introduction to Python
	Data Types
	int type
	float type
	Bool type
	String type str
	Casting between types

	Operators
	Arithmetic operators
	Relational operators
	Logical operators
	String operators
	Order of precedence

	Variables and the assignment operator
	Naming variable

	Miscellaneous
	Input

	Output
	Modules
	Comments

	Selection and Repetition
	Selection
	if Structure
	if-else structure
	Multi-way selection

	Repetition: While loops and counters
	while loop
	Incrementing counters
	For loops
	break statement

	Bisection method,Finding square-root

	List,tuples,and strings
	List type
	Motivation
	List type in python

	Manipulating lists
	Initializing
	Input to list
	The input reverse problem

	Element distinctness problem
	List copy
	Reverse List

	Tuples
	Application
	Deep copy

	Sequences
	Iterating over sequences

	List comprehension

	Functions
	Introduction
	Defining new function

	Scope of variables and execution stack
	Functions handling lists,tuples,and strings
	Python garbage collector

	Miscellaneous
	Building your own modules
	Function defined in another function
	Default parameters
	Function without a return value

	Higher-order functions
	Functions are objects
	Function taking another function as input argument

	Some methods associated with list and str types
	Methods associated with data types
	List methods
	Methods associated with the string type

	Files and exceptions
	Files
	Manipulating files in python
	Iterable versus subscriptable objects

	Exceptions and assertions
	Handling exceptions
	Assertions

	Miscellaneous: plotting, randomness, and Monte Carlo simulation
	Plotting
	Generating random numbers
	Monte Carlo Simulation
	Approximating

	Program efficiency,binary Search, insertion sort
	Asymptotic Analysis: Theta notation
	Linear search
	Asymptotic Analysis
	Working with Theta

	Other asymptotic notations
	Worst case running time
	Common growth rates

	Binary Search
	The idea

	Sorting problem
	Insertion Sort

	Time analysis of some list operations and methods
	Some operations and methods
	List.append
	list.sort

	Recursion
	Introduction: recursive factorial and recursion stack
	Recursion stack
	Iterative Factorial
	Recursive versus iterative factorial

	Tracking recursion, indirect recursion, infinite recursion
	Order of printing
	Infinite recursion
	Indirect recursion

	Two-way recursion: Fibonacci numbers
	Fibonacci numbers
	Fibonacci numbers: recursive function
	Fibonacci numbers: non-recursive:list-based
	Fibonacci numbers: recursive: memoized
	Fibonacci numbers: non-recursive O(1) space
	Better than (n) arithmetic operations

	Two-way recursion: tower of Hanoi
	Tower of Hanoi problem

	Recursive binary search
	Recursive viewpoint
	Implement the recursiveBinarySearch function
	Iterative versus recursive binary search

	Data structures digression
	Lists of lists
	Representing graphs using lists of lists
	Initializing 2-dimensional list
	Printing matrices

	Applications of 2-dimensional lists
	Check if given matrix is symmetric
	Maze reachability: right-down moves

	Dictionaries
	Dictionaries
	Dictionary operations
	Iterating over keys in dictionaries
	Copy, clear, update, equality check

	Applications of dictionaries
	Frequency of words in a file
	2-SUM

	Stacks

	Classes and object oriented programming
	Intro
	User defined classes
	OOP machinery
	Terminologies
	Other special methods

	OOP concepts
	Inheritance
	Class variables

	Stack class derived from list
	Stack
	Queue
	Non-efficient implementation
	Wrap-around

